精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿B到C的方向運動,且DE、始終經過點A,EF與AC交于M點.
(1)求證:△ABE∽△ECM;
(2)探究:在△DEF運動過程中,重疊部分能否構成等腰三角形?若能,求出BE的長;若不能,請說明理由;
(3)當線段AM最短時,求重疊部分的面積.

【答案】
(1)證明:∵AB=AC,

∴∠B=∠C,

∵△ABC≌△DEF,

∴∠AEF=∠B,

又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,

∴∠CEM=∠BAE,

∴△ABE∽△ECM


(2)能.

解:∵∠AEF=∠B=∠C,且∠AME>∠C,

∴∠AME>∠AEF,

∴AE≠AM;

當AE=EM時,則△ABE≌△ECM,

∴CE=AB=5,

∴BE=BC﹣EC=6﹣5=1,

當AM=EM時,則∠MAE=∠MEA,

∴∠MAE+∠BAE=∠MEA+∠CEM,

即∠CAB=∠CEA,

又∵∠C=∠C,

∴△CAE∽△CBA,

,

∴CE= ,

∴BE=6﹣ = ;

∴BE=1或


(3)解:設BE=x,

又∵△ABE∽△ECM,

,

即:

∴CM=﹣ + x=﹣ (x﹣3)2+ ,

∴AM=5﹣CM═ (x﹣3)2+ ,

∴當x=3時,AM最短為 ,

又∵當BE=x=3= BC時,

∴點E為BC的中點,

∴AE⊥BC,

∴AE= =4,

此時,EF⊥AC,

∴EM= = ,

SAEM=


【解析】(1)由AB=AC,根據等邊對等角,可得∠B=∠C,又由△ABC≌△DEF與三角形外角的性質,易證得∠CEM=∠BAE,則可證得:△ABE∽△ECM;(2)首先由∠AEF=∠B=∠C,且∠AME>∠C,可得AE≠AM,然后分別從AE=EM與AM=EM去分析,注意利用全等三角形與相似三角形的性質求解即可求得答案;(3)首先設BE=x,由△ABE∽△ECM,根據相似三角形的對應邊成比例,易得CM=﹣ + x=﹣ (x﹣3)2+ ,繼而求得AM的值,利用二次函數的性質,即可求得線段AM的最小值,繼而求得重疊部分的面積.
【考點精析】關于本題考查的二次函數的最值和勾股定理的概念,需要了解如果自變量的取值范圍是全體實數,那么函數在頂點處取得最大值(或最小值),即當x=-b/2a時,y最值=(4ac-b2)/4a;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】若點A(﹣2,n)在x軸上,則點Bn+1,n1)在(

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在今年“六一”期間,揚州市某中學計劃組織初一學生到上海研學,如果租用甲種客車2輛,乙種客車3輛,則可載180人,如果租用甲種客車3輛,乙種客車1輛,則可載165人.

(1)請問甲、乙兩種客車每輛分別能載客多少人?

(2)若該學校初一年級參加研學活動的師生共有303名,旅行社承諾每輛車安排一名導游,導游也需一個座位.旅行前,旅行社的一名導游由于有特殊情況,旅行社只能安排7名導游,為保證所租的每輛車均有一名導游,租車方案調整為:同時租65座、甲種客車和乙種客車的大小三種客車,出發(fā)時,所租的三種客車的座位恰好坐滿,請問旅行社的租車方案應如何安排?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知四邊形ABCD為菱形,且A(0,3)、B(﹣4,0).

(1)求經過點C的反比例函數的解析式;
(2)設P是(1)中所求函數圖象上一點,以P、O、A頂點的三角形的面積與△COD的面積相等.求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】求下列各式中的x

1x30.0270

2)(x229

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是梯形,BD=AC且BD⊥AC,若AB=2,CD=4,則S梯形ABCD=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】方程4x2x+8)的解是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知A(1,5),B(3,﹣1)兩點,在x軸上取一點M,使AM﹣BM取得最大值時,則M的坐標為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于x的方程x2﹣(m+2)x+(2m﹣1)=0.
(1)求證:方程恒有兩個不相等的實數根;
(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長.

查看答案和解析>>

同步練習冊答案