【題目】在平面直角坐標系xOy中,對于點和,給出如下定義:若,則稱點Q為點P的“可控變點”.
例如,點的“可控變點”為點,點的“可控變點”為點.
(1)點的“可控變點”坐標為 ;
(2)若點P在函數(shù)的圖象上,其“可控變點”Q的縱坐標是7,求“可控變點” Q的橫坐標;
(3)若點P在函數(shù)的圖象上,其“可控變點”Q的縱坐標的取值范圍是,直接寫出實數(shù)a的值.
【答案】(1)(﹣5,2);(2)或3;(3)
【解析】
(1)根據(jù)可控變點的定義,可得答案;
(2)根據(jù)可控變點的定義,可得函數(shù)解析式,根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得答案;
(3)根據(jù)可控變點的定義,可得函數(shù)解析式,根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得答案.
解:(1)∵-5<0,
∴y'=-y=2,
即點(-5,-2)的“可控變點”坐標為(-5,2)
∴點M坐標為(﹣5,2).
(2)依題意,圖象上的點P的“可控變點”必在函數(shù)
的圖象上.
∵“可控變點”Q的縱坐標y′是7,
∴當,解得:,
當,解得:
綜上所述,點Q的橫坐標為或3.
(3)依題意,圖象上的點P的“可控變點”必在函數(shù)
的圖象上(如圖).
∵,
∴.
∴.
∴由題意可知,a的值是:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(―3,6)、B(―9,一3),以原點O為位似中心,相似比為,把△ABO縮小,則點A的對應(yīng)點A′的坐標是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A(﹣5,0),B(﹣3,0)點C在y的正半軸上,∠CBO=45°,CD∥AB.∠CDA=90°,點P從點A出發(fā),沿x軸向右以每秒1個單位長度的速度運動,運動時間為t秒.
(1)當時t=1,求PC的長;
(2)當∠BCP=15°時,求t的值;
(3)以線段PC為直徑的⊙Q隨點P的運動而變化,當⊙Q與四邊形ABCD的邊(或邊所在的直線)相切時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的方程x2+(2k-1)x+k2-1=0有兩個實數(shù)根x1,x2.
(1)求實數(shù)k的取值范圍;
(2)若x1,x2滿足x12+x22=16+x1x2,求實數(shù)k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的網(wǎng)格中,每個小正方形的邊長為1,每個小正方形的頂點叫做格點.三角形ABC的三個頂點均在格點上,以點A為圓心的弧EF與BC相切于格點D,分別交AB,AC于點E,F.
(1)直接寫出三角形ABC邊長AB= ;AC= ;BC= .
(2)求圖中由線段EB,BC,CF及弧FE所圍成的陰影部分的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把大小和形狀完全相同的6張卡片分成兩組,每組3張,分別標上1、2、3,將這兩組卡片分別放入兩個盒子中攪勻,再從中隨機抽取一張.
(1)試求取出的兩張卡片數(shù)字之和為奇數(shù)的概率;
(2)若取出的兩張卡片數(shù)字之和為奇數(shù),則甲勝;取出的兩張卡片數(shù)字之和為偶數(shù),則乙勝;試分析這個游戲是否公平?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】家庭過期藥品屬于“國家危險廢物”,處理不當將污染環(huán)境,危害健康.某市藥監(jiān)部門為了解市民家庭處理過期藥品的方式,決定對全市家庭作一次簡單隨機抽樣調(diào)査.
(1)下列選取樣本的方法最合理的一種是 .(只需填上正確答案的序號)
①在市中心某個居民區(qū)以家庭為單位隨機抽;②在全市醫(yī)務(wù)工作者中以家庭為單位隨機抽;③在全市常住人口中以家庭為單位隨機抽取.
(2)本次抽樣調(diào)査發(fā)現(xiàn),接受調(diào)査的家庭都有過期藥品,現(xiàn)將有關(guān)數(shù)據(jù)呈現(xiàn)如圖:
①m= ,n= ;
②補全條形統(tǒng)計圖;
③扇形統(tǒng)計圖中扇形C的圓心角度數(shù)是 ;
④家庭過期藥品的正確處理方式是送回收點,若該市有180萬戶家庭,請估計大約有多少戶家庭處理過期藥品的方式是送回收點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)某體育用品專賣店銷售7個籃球和9個排球的總利潤為355元,銷售10個籃球和20個排球的總利潤為650元.
(1)求每個籃球和每個排球的銷售利潤;
(2)已知每個籃球的進價為200元,每個排球的進價為160元,若該專賣店計劃用不超過17400元購進籃球和排球共100個,且要求籃球數(shù)量不少于排球數(shù)量的一半,請你為專賣店設(shè)計符合要求的進貨方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com