【題目】拋物線y2x+121的頂點(diǎn)坐標(biāo)是(  )

A. 1,1B. (﹣1,﹣1C. 1,﹣1D. (﹣1,1

【答案】B

【解析】

直接利用頂點(diǎn)式的特點(diǎn)可求頂點(diǎn)坐標(biāo).

因?yàn)?/span>y2x+121是拋物線的頂點(diǎn)式,根據(jù)頂點(diǎn)式的坐標(biāo)特點(diǎn)可知,頂點(diǎn)坐標(biāo)為(﹣1,﹣1),故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一組鄰邊相等,并且有一個(gè)角是直角的平行四邊形是正方形,因此正方形是四邊相等,四角相等的四邊形.
初二數(shù)學(xué)興趣小組開展了一次課外活動(dòng),過程如下:如圖,正方形ABCD中,AB=6,將三角板放在正方形ABCD上,使三角板的直角頂點(diǎn)與D點(diǎn)重合.三角板的一邊交AB于點(diǎn)P,另一邊交BC的延長線于點(diǎn)Q.

(1)求證:DP=DQ
(2)如圖②,小聰在圖①的基礎(chǔ)上作∠PDQ的平分線DE交BC于點(diǎn)E,連接PE,他發(fā)現(xiàn)PE和QE存在一定的數(shù)量關(guān)系,請猜測他的結(jié)論并予以證明;

(3)如圖③,固定三角板直角頂點(diǎn)在D點(diǎn)不動(dòng),轉(zhuǎn)動(dòng)三角板,使三角板的一邊交AB的延長線于點(diǎn)P,另一邊交BC的延長線于點(diǎn)Q,仍作∠PDQ的平分線DE交BC延長線于點(diǎn)E,連接PE,若AB:AP=3:4,請幫小聰算出△DEP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:有三個(gè)內(nèi)角相等的四邊形叫三等角四邊形.

(1)三等角四邊形ABCD中,∠A=∠B=∠C,求∠A的取值范圍;
(2)如圖,折疊平行四邊形紙片DEBF,使頂點(diǎn)E,F(xiàn)分別落在邊BE,BF上的點(diǎn)A,C處,折痕分別為DG,DH.求證:四邊形ABCD是三等角四邊形.
(3)三等角四邊形ABCD中,∠A=∠B=∠C,若CB=CD=4,則當(dāng)AD的長為何值時(shí),AB的長最大,其最大值是多少?并求此時(shí)對角線AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)P在第二、四象限的角平分線上,在y軸的左側(cè),且到y(tǒng)軸的距離是2,則點(diǎn)P的坐標(biāo)是().

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一次函數(shù)ykx+bk、b是常數(shù),k0)的圖象經(jīng)過第一、二、三象限,那么k、b應(yīng)滿足的條件是( 。

A. k0b0B. k0b0C. k0b0D. k0b0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】原子很小,1010個(gè)氧原子首位連接排成一行的長度為1m,則每一個(gè)氧原子的直徑為(
A.107m
B.108m
C.109m
D.1010m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,是中心對稱圖形但不是軸對稱圖形的是( 。

A. 平行四邊形B. 矩形C. 菱形D. 等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:|3|+(﹣23+10_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題是真命題的是( 。

A. 對角線相等的平行四邊形是矩形

B. 菱形的對角線相等

C. 四邊都相等的四邊形是矩形

D. 對角線互相垂直的平行四邊形是正方形

查看答案和解析>>

同步練習(xí)冊答案