【題目】如圖,已知扇形AOB中,OA=3,∠AOB=120°,C是在上的動點.以BC為邊作正方形BCDE,當(dāng)點C從點A移動至點B時,點D經(jīng)過的路徑長是_____.
【答案】2 π
【解析】
如圖,由此BO交⊙O于F,取的中點H,連接FH、HB、BD.易知△FHB是等腰直角三角形,HF=HB,∠FHB=90°,由∠FDB=45°=∠FHB,推出點D在⊙H上運動,軌跡是(圖中紅線),易知∠HFG=∠HGF=15°,推出∠FHG=150°,推出∠GHB=120°,易知HB=3,利用弧長公式即可解決問題.
如圖,由此BO交⊙O于F,取的中點H,連接FH、HB、BD.
易知△FHB是等腰直角三角形,HF=HB,∠FHB=90°,
∵∠FDB=45°=∠FHB,
∴點D在⊙H上運動,軌跡是(圖中紅線),
易知∠HFG=∠HGF=15°,
∴∠FHG=150°,
∴∠GHB=120°,易知HB=3,
∴點D的運動軌跡的長為π.
故答案為2π.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線過x軸上兩點A(9,0),C(-3,0),且與y軸交于點B(0,-12).
(1)求拋物線的解析式;
(2)若動點P從點A出發(fā),以每秒2個單位沿射線AC方向運動;同時,點Q從點B出發(fā),以每秒1個單位沿射線BA方向運動,當(dāng)點P到達(dá)點C處時,兩點同時停止運動.問當(dāng)t為何值時,△APQ∽△AOB?
(3)若M為線段AB上一個動點,過點M作MN平行于y軸交拋物線于點N.
①是否存在這樣的點M,使得四邊形OMNB恰為平行四邊形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.
②當(dāng)點M運動到何處時,四邊形CBNA的面積最大?求出此時點M的坐標(biāo)及四邊形CBNA面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形,在上取兩點在左邊),以為邊作等邊三角形,使頂點在上.
(1)求△PEF的邊長;
(2)若△PEF的邊在線段上移動.分別交于點.求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,E為BC上一點,以CE為直徑作⊙O,AB與⊙O相切于點D,連接CD,若BE=OE=2.
(1)求證:∠A=2∠DCB;
(2)求圖中陰影部分的面積(結(jié)果保留π和根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A是半徑為6cm的⊙O上的定點,動點P從A出發(fā),以πcm/s的速度沿圓周按順時針方向運動,當(dāng)點P回到A時立即停止運動.設(shè)點P運動時間為t(s);
(1)當(dāng)t=6s時,∠POA的度數(shù)是________;
(2)當(dāng)t為多少時,∠POA=120°;
(3)如果點B是OA延長線上的一點,且AB=AO,問t為多少時,△POB為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點坐標(biāo)為M(1,4),且經(jīng)過點N(2,3),與x軸交于A,B兩點(點A在點B左側(cè)),與y軸交于點C、設(shè)直線CM與x軸交于點D.
(1)求拋物線的解析式.
(2)在拋物線的對稱軸上是否存在點P,使以點P為圓心的圓經(jīng)過A、B兩點,且與直線CD相切?若存在,求出P的坐標(biāo);若不存在.請說明理由.
(3)設(shè)直線y=kx+2與拋物線交于Q、R兩點,若原點O在以QR為直徑的圓外,請直接寫出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AC=DC,AC⊥DC,直線MN經(jīng)過點A,作DB⊥MN,垂足為B,連接CB.
(1)直接寫出∠D與∠MAC之間的數(shù)量關(guān)系;
(2)①如圖1,猜想AB,BD與BC之間的數(shù)量關(guān)系,并說明理由;
②如圖2,直接寫出AB,BD與BC之間的數(shù)量關(guān)系;
(3)在MN繞點A旋轉(zhuǎn)的過程中,當(dāng)∠BCD=30°,BD=時,直接寫出BC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB經(jīng)過點O,CD是弦,且CD⊥AB于點F,連接AD,過點B的直線與線段AD的延長線交于點E,且∠E=∠ACF.
(1)若CD=2, AF=3,求⊙O的周長;
(2)求證:直線BE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,山區(qū)某教學(xué)樓后面緊鄰著一個土坡,坡面BC平行于地面AD,斜坡AB的坡比為i=1:,且AB=26米,為了防止山體滑坡,保障安全,學(xué)校決定對該土坡進行改造,經(jīng)地質(zhì)人員勘測,當(dāng)坡角不超過53°時,可確保山體不滑坡;
(1)求改造前坡頂與地面的距離BE的長;
(2)為了消除安全隱患,學(xué)校計劃將斜坡AB改造成AF(如圖所示),那么BF至少是多少米?(結(jié)果精確到1米)
【參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75】
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com