精英家教網 > 初中數學 > 題目詳情

【題目】如圖,⊙O是△ABC的外接圓,AB經過點O,CD是弦,且CDAB于點F,連接AD,過點B的直線與線段AD的延長線交于點E,且∠E=ACF.

(1)CD=2, AF=3,求⊙O的周長;

(2)求證:直線BE是⊙O的切線.

【答案】(1)8π;(2)證明見解析.

【解析】

1)連接OC設半徑為r,在RtOFC中利用勾股定理即可解決問題.
2)只要證明CDEB,即可得到∠AFD=∠ABE90°,由此可以得出結論.

解:(1)連接OC.設半徑為r,

OACD,

DF=FC=,

RTOFC,∵∠OFC=90°,FC=,OF=r﹣3,OC=r,

r2=(r﹣3)2+(2 ,

r=4,

∴⊙O的周長為8π.

(2)證明:∵OACD,

DF=FC,AD=AC,AFD=90°

∴∠ADC=ACD,

∵∠E=ACD,

∴∠ADC=E,

CDEB,

∴∠AFD=ABE=90°,

BE是⊙O的切線.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△OAB中,OA=4,AB=5,點C在OA上,AC=1,⊙P的圓心P在線段BC上,且⊙P與邊AB,AO都相切.若反比例函數(k≠0)的圖象經過圓心P,則k=________________。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD的對角線相交于點O,DECA,AEBD.

(1)求證:四邊形AODE是菱形;

(2)若將題設中“矩形ABCD”這一條件改為“菱形ABCD”,其余條件不變,則四邊形AODE的形狀是什么?說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數y=x2-2x-3的圖象與x軸交于A、B兩點(AB的左側),y軸交于點C,頂點為D.

(1)求點A、B、C、D的坐標,并在下面直角坐標系中畫出該二次函數的大致圖象;

(2)說出拋物線y=x2-2x-3可由拋物線y=x2如何平移得到?

(3)求四邊形OCDB的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線軸交于A -1,0),B 5,0)兩點,直線y軸交于點,與軸交于點x軸上方的拋物線上一動點,過點軸于點,交直線于點設點的橫坐標為

1)求拋物線的解析式;

2)若,求的值;

3)若點是點關于直線的對稱點,是否存在點,使點落在軸上?若存在,請直接寫出相應的點的坐標;若不存在,請說明理由

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:反比例函數和一次函數y=2x-1,其中一次函數的圖像經過點A(k,5).

(1)試求反比例函數的解析式;

(2)若點B在第四象限內,且同時在上述兩函數的圖像上,求B點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在距離鐵軌200 mB處,觀察從甲地開往乙地的和諧號動車,當動車車頭在A處時,恰好位于B處的北偏東60°方向上.10 s后,動車車頭到達C處,恰好位于B處的西北方向上,則這列動車的平均車速是________ m/s(結果保留根號).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數yax2+bx+ca≠0)的圖象如圖,則下列四個結論:abc>0;②b2﹣4ac>0;③a+b+c<0;④b>2a.其中正確的個數是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我市某中學決定在學生中開展丟沙包、打籃球、跳大繩和踢毽球四種項目的活動,為了解學生對四種項目的喜歡情況,隨機調查了該校m名學生最喜歡的一種項目(每名學生必選且只能選擇四種活動項目的一種),并將調查結果繪制成如下的不完整的統(tǒng)計圖表:

學生最喜歡的活動項目的人數統(tǒng)計表

項目

學生數(名)

百分比

丟沙包

20

10%

打籃球

60

p%

跳大繩

n

40%

踢毽球

40

20%

根據圖表中提供的信息,解答下列問題:

(1)m= ,n= ,p= ;

(2)請根據以上信息直接補全條形統(tǒng)計圖;

(3)根據抽樣調查結果,請你估計該校2000名學生中有多少名學生最喜歡跳大繩.

查看答案和解析>>

同步練習冊答案