【題目】如圖,△ABC中,AC=BC=4,∠ACB=90°,D為邊AB上一動點(不與A、B重合),⊙D與BC切于E點,E點關(guān)于CD的對稱點F在△ABC的一邊上,則BD=______.
【答案】或;
【解析】
分為當(dāng)E點關(guān)于CD的對稱點F在AB或者AC上進行討論:
①當(dāng)F在AB邊上時,根據(jù)對稱性得出CE=CF,DE=DF,作,則 ,設(shè),則,,在直角三角形CHF中,用勾股定理解出即可得出答案;
②當(dāng)F在AC邊上時,根據(jù)對稱性知圓與AC、BC均相切,此時D在AB的中點,從而求解.
解:①當(dāng)F在AB邊上時,作,連接DF、CF,如圖:
根據(jù)對稱性知:CE=CF,DE=DF
又∵AC=BC=4,∠ACB=90°
∴ ,△DEB是等腰直角三角形
設(shè),則,
∴
在直角三角形CHF中:
即: 解得:
∴
②當(dāng)F在AC邊上時,根據(jù)對稱性知圓與AC、BC均相切,此時此時D在AB的中點,如圖:
∴
故答案為:或
科目:初中數(shù)學(xué) 來源: 題型:
【題目】乒乓球是我國的國球,比賽采用單局分制,分團體、單打、雙打等。在某站公開賽中,某直播平臺同時直播場男單四分之一決賽,四場比賽的球桌號分別為“”,“”,“”,“”(假設(shè)場比賽同時開始),小寧和父親準(zhǔn)備一同觀看其中的一場比賽,但兩人的意見不統(tǒng)一,于是采用抽簽的方式?jīng)Q定,抽簽規(guī)則如下:將正面分別寫有數(shù)字“”,“”,“”,“”的四張卡片(除數(shù)字不同外,其余均相同)分別對應(yīng)球桌號“”,“”,“”,“”,卡片洗勻后背面朝上放在桌子上,父親先從中隨機抽取一張,小寧再從剩下的張卡片中隨機抽取一張,比較兩人所抽卡片上的數(shù)字,觀看較大的數(shù)字對應(yīng)球桌的比賽。
(1)下列事件中屬于必然事件的是 .
A.抽到的是小寧最終想要看的一場比賽的球桌號
B.抽到的是父親最終想要看的一場比賽的球桌號
C.小寧和父親抽到同一個球桌號
D.小寧和父親抽到的球桌號不一樣
(2)用列表法或樹狀圖法求小寧和父親最終觀看“T”球桌比賽的概率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形紙片中,,,折疊紙片使點落在邊上的處,拆痕為.過點作交于,連接.
(1)求證:四邊形為菱形;
(2)當(dāng)點在邊上移動時,折痕的端點、也隨之移動;
①當(dāng)點與點重合時(如圖2),求菱形的邊長;
②若限定、分別在邊、上移動,求的內(nèi)切圓半徑的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①b2﹣4ac>0;②abc<0;③4a+b=0;④4a﹣2b+c>0.其中正確結(jié)論的個數(shù)是( 。
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,C是⊙O上的一點,D是AB上的一點,DE⊥AB于D,DE交BC于F,且EF=EC.
(1)求證:EC是⊙O的切線;
(2)若BD=4,BC=8,圓的半徑OB=5,求切線EC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面系中,一次函數(shù)的圖像經(jīng)過定點A,反比例函數(shù)的圖像經(jīng)過點A,且與一次函數(shù)的圖像相交于點B(,m).
(1)求m、a的值;
(2)設(shè)橫坐標(biāo)為n的點P在反比例函數(shù)圖象的第三象限上,且在點B右側(cè),連接AP、BP,△ABP的面積為12,求代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】光明中學(xué)八年級一班開展了“讀一本好書”的活動,委會對學(xué)生閱讀書籍的情況行了問卷調(diào)查,問卷設(shè)置了“小說”、“戲劇”、“散文”“其他”四個類別,每位同學(xué)僅選一項,根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布直方圖和扇形統(tǒng)計圖.根據(jù)圖表提供的信息,回答下列問題:
(1)八年級一班有多少名學(xué)生?
(2)請補全頻數(shù)分布直方圖,在扇形統(tǒng)計圖中,“戲劇”類對應(yīng)的扇形圓心角是多少度?
(3)在調(diào)查問卷中,甲、乙、丙、丁四位同學(xué)選擇了“戲劇”類,現(xiàn)從中任意選出名同學(xué)參加學(xué)校的戲劇社團,請用畫樹狀圖或列表的方法,求選取的人恰好是甲和丙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,頂點坐標(biāo)為的拋物線經(jīng)過點,與軸的交點在,之間(含端點),則下列結(jié)論:①;②;③對于任意實數(shù),總成立;④關(guān)于的方程有兩個不相等的實數(shù)根.其中結(jié)論正確的個數(shù)為( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,,點是對角線上一點,連接,過點作,交于點,連接,交于點,將沿翻折,得到,連接,交于點,若點是的中點,則的周長是( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com