【題目】計(jì)算、化簡
(1)y2·y3·y4
(2)(-4a2b)3
(3) (22)4×()8
(4)-8-(-15)+(-9)-(-12);
(5) ;
(6)[-22-()×36]÷5;
(7)(-1)2017-];
(8)5(3a2b-ab2)-4(-ab2+3a2b);
(9)(2x2y+2xy2)-[2(x2y-1)+3xy2+2].
【答案】(1)y9 ;(2)-64 a6b 3;(3)1;(4)10;(5) ;(6)-1;(7)9;(8)3a2b-ab2;(9)-xy2.
【解析】
根據(jù)同底數(shù)冪的乘法和有理數(shù)的混合運(yùn)算,順序,先乘方,再乘除,最后算加減解答即可;根據(jù)整式的混合計(jì)算順序解答即可.
(1)原式= y9 ;
(2)原式=-64 a6b 3;
(3)原式=28×()=1;
(4)原式=-8+15-9+12=10;
(5)原式=- ;
(6)原式=(4×36)÷5
=(-4-28+33-6)÷5
=-5÷5
=-1;
(7)原式=1×(1515)
=-1+10
=9;
(8)原式=15a2b-5ab2+4ab2-12a2b
=3a2b-ab2;
(9)原式=2x2y+2xy2-2x2y+2-3xy2-2
=-xy2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知D,E分別為邊BC,AD的中點(diǎn),且S△ABC=4 cm2,則△BEC的面積為( )
A. 2 cm2 B. 1 cm2 C. 0.5 cm2 D. 0.25 cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,點(diǎn)O時(shí)∠CAB、∠ACB平分線的交點(diǎn),且BC=8 cm,AB=6 cm,AC=10 m,則點(diǎn)O到邊AB的距離為( )
A.1 cmB.2 cmC.3 cmD.4 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是等邊三角形的旋轉(zhuǎn)中心,∠EOF=120°,∠EOF繞點(diǎn)O進(jìn)行旋轉(zhuǎn),在旋轉(zhuǎn)過程中,OE與OF與△ABC的邊構(gòu)成的圖形的面積( )
A. 等于△ABC面積的 B. 等于△ABC面積的
C. 等于△ABC面積的 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△AOB是邊長為2的等邊三角形,將△AOB繞著點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)得到△DCB,使得點(diǎn)D落在x軸的正半軸上,連接OC,AD.
(1)求證:OC=AD;
(2)求OC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果方程的兩個(gè)根是,,那么,.請(qǐng)根據(jù)以上結(jié)論,解決下列問題:
已知關(guān)于的方程,求出一個(gè)一元二次方程,使它的兩根別是已知方程兩根的倒數(shù);
已知、滿足,,求的值;
已知、、均為實(shí)數(shù),且,,求正數(shù)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(1,3),將點(diǎn)A繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到點(diǎn)A′,則點(diǎn)A′的坐標(biāo)是( )
A. (-3,1) B. (3,-1) C. (-1,3) D. (1,-3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=-x+8的圖像與x軸、y軸分別交于A、B兩點(diǎn).P是x軸上一個(gè)動(dòng)點(diǎn),若沿BP將△OBP翻折,點(diǎn)O恰好落在直線AB上的點(diǎn)C處,則點(diǎn)P的坐標(biāo)是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com