【題目】快車和慢車分別從甲、乙兩地同時(shí)出發(fā),勻速相向而行,快車到達(dá)乙地后,慢車?yán)^續(xù)前行,設(shè)出發(fā)小時(shí)后,兩車相距千米,圖中折線表示從兩車出發(fā)至慢車到達(dá)甲地的過(guò)程中之間的函數(shù)關(guān)系式,根據(jù)圖中信息,解答下列問(wèn)題.

1)甲、乙兩地相距 千米,快車從甲地到乙地所用的時(shí)間是 小時(shí);

2)求線段的函數(shù)解析式(寫出自變量取值范圍),并說(shuō)明點(diǎn)的實(shí)際意義.

3)求快車和慢車的速度.

【答案】(1)640,6.4;(2)y=-160x+640,自變量取值范圍是0≤x≤4,Q點(diǎn)為快車與慢車相遇的時(shí)間;(3)快車速度:100千米/時(shí);慢車速度:60千米/時(shí).

【解析】

PQ段的速度表示兩車速度和,在Q點(diǎn)表示兩車相遇,M點(diǎn)表示快車已經(jīng)到達(dá)了乙地,MN表示只有慢車還在行駛

1)直接由圖像即可得到結(jié)果 2)利用P點(diǎn)和(,440)可求出直線PQ的解析式,然后求出Q點(diǎn),自變量的取值范圍即從0Q的橫坐標(biāo) 3)由PQ直線算出速度和,由第一問(wèn)得到快車的速度,然后得到慢車速度即可

1)由圖像可知,兩車未出發(fā)時(shí)兩車最遠(yuǎn),即甲乙兩地的距離為640km;由圖像可知在6.4小時(shí)之后只有慢車還在運(yùn)動(dòng),所以快車從甲地到達(dá)乙地的時(shí)間為6.4小時(shí)

2)因?yàn)?/span>P點(diǎn)坐標(biāo)為(0,640),所以可設(shè)PQ直線解析式為y=kx+640,將點(diǎn)(,440)代入,得到方程440=k+640,解得k=-160,所以PQ函數(shù)解析式為y=-160x+640;Q點(diǎn)的坐標(biāo)為(40),所以線段PQ函數(shù)解析式的自變量取值范圍是0≤x≤4Q點(diǎn)的意義是快車與慢車相遇的時(shí)間

3)由PQ段可得到兩車的速度和為(640-440÷=160km/h,由(1)可得到快車的速度為640÷6.4=100km/h,則慢車速度為60km/h

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,P點(diǎn)從點(diǎn)A開始以2厘米/秒的速度沿ABC的方向移動(dòng),點(diǎn)Q從點(diǎn)C開始以1厘米/秒的速度沿CAB的方向移動(dòng),在直角三角形ABC中,∠A90°,若AB16厘米,AC12厘米,BC20厘米,如果P、Q同時(shí)出發(fā),用t(秒)表示移動(dòng)時(shí)間,那么:

1)如圖1,若P在線段AB上運(yùn)動(dòng),Q在線段CA上運(yùn)動(dòng),試求出t為何值時(shí),QAAP

2)如圖2,點(diǎn)QCA上運(yùn)動(dòng),試求出t為何值時(shí),三角形QAB的面積等于三角形ABC面積的;

3)如圖3,當(dāng)P點(diǎn)到達(dá)C點(diǎn)時(shí),P、Q兩點(diǎn)都停止運(yùn)動(dòng),試求當(dāng)t為何值時(shí),線段AQ的長(zhǎng)度等于線段BP的長(zhǎng)的

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),線段.

1)如圖,若點(diǎn)在線段上,且,,點(diǎn)、分別是、的中點(diǎn),則線段的長(zhǎng)度是 ;

2)若把(1)中點(diǎn)在線段上,且,,改為點(diǎn)是線段上任意一點(diǎn),且,其他條件不變,請(qǐng)求出線段的長(zhǎng)度(用含、的式子表示);

3)若把(2)中點(diǎn)是線段上任意一點(diǎn),改為點(diǎn)是直線上任意一點(diǎn),其他條件不變,則線段的長(zhǎng)度會(huì)變化嗎?若有變化,求出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AD//BC,AD=AB=2,B=120°,ADC=150°,現(xiàn)以對(duì)角線AC為邊向點(diǎn)D一側(cè)作等邊ACE,則四邊形ABCE的面積=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD 中,O是對(duì)角線AC與BD的交點(diǎn),M是BC邊上的動(dòng)點(diǎn)(點(diǎn)M不與B,C重合),CN⊥DM,CN與AB交于點(diǎn)N ,連接OM,ON,MN .下列五個(gè)結(jié)論:①△CNB≌△DMC ;②△CON≌△DOM ;③△OMN≌△OAD ;④ ;⑤若AB=2,則 的最小值是 ,其中正確結(jié)論的個(gè)數(shù)是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC是等邊三角形,點(diǎn)D是直線BC上一點(diǎn),以AD為一邊在AD的右側(cè)作等邊△ADE.求∠DCE的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,△ABC中,∠C=90°,請(qǐng)用直尺和圓規(guī)作一條直線,把△ABC分割成兩個(gè)等腰三角形(不寫作法,但須保留作圖痕跡).

2)已知內(nèi)角度數(shù)的兩個(gè)三角形如圖2,圖3所示.請(qǐng)你判斷,能否分別畫一條直線把它們分割成兩個(gè)等腰三角形?若能,請(qǐng)寫出分割成的兩個(gè)等腰三角形頂角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用如圖所示矩形紙片的四個(gè)角都剪去一個(gè)邊長(zhǎng)為的正方形(陰影部分).并制成一個(gè)長(zhǎng)方體紙盒。

(1)用a,b,x表示紙片剩余部分的面積和紙盒的底面積;

(2)當(dāng)a=6,b=4,且剪去部分的面積等于剩余部分的面積時(shí),求正方形的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1)所示,將一個(gè)腰長(zhǎng)為2等腰直角△BCD和直角邊長(zhǎng)為2、寬為1的直角△CED拼在一起.現(xiàn)將△CED繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至△CED,旋轉(zhuǎn)角為a

(1)如圖(2),旋轉(zhuǎn)角a=30°時(shí),點(diǎn)D′到CD邊的距離DA=______.求證:四邊形ACED′為矩形;

(2)如圖(1),△CED繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一周的過(guò)程中,在BC上如何取點(diǎn)G,使得GD=ED;并說(shuō)明理由.

(3)△CED繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一周的過(guò)程中,∠CED=90°時(shí),直接寫出旋轉(zhuǎn)角a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案