【題目】每年四月北京很多地方楊絮、柳絮如雪花般漫天飛舞,人們不堪其擾。據(jù)測(cè)定,楊絮纖維的直徑約為0.000 010 5米,將0.000 010 5用科學(xué)記數(shù)法可表示為( )
A.1.05×105
B.1.05×10-5
C.0.105×10-4
D.10.5×10-6

【答案】B
【解析】解:絕對(duì)值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10﹣n , 與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定,所以0.000 010 5= 1.05×10-5 ,故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD,AB=CD,點(diǎn)E、FBC上,且BF=CE

1)求證:ABE≌△DCF

2)試證明:以A、F、D、E為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方形ABCD中,AB=10厘米,BC=6厘米,點(diǎn)P沿AB邊從點(diǎn)A開(kāi)始向點(diǎn)B3厘米/秒的速度移動(dòng);點(diǎn)Q沿DA邊從點(diǎn)D開(kāi)始向點(diǎn)A2厘米/秒的速度移動(dòng).如果P、Q同時(shí)出發(fā),用t (秒)表示移動(dòng)的時(shí)間,那么:

(1)如圖1,用含t的代數(shù)式表示AP= ,AQ= .并求出當(dāng)t為何值時(shí)線段AP=AQ.

(2)如圖2,在不考慮點(diǎn)P的情況下,連接QB,問(wèn):當(dāng)t為何值時(shí)QAB的面積等于長(zhǎng)方形面積的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB=AC,∠A=30°,AB的垂直平分線MN交AC于點(diǎn)D,求∠DBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.則下列結(jié)論: ①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正確結(jié)論__________(填編號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問(wèn)題.
探究一:如圖1,在△ABC中,已知O是∠ABC與∠ACB的平分線BO和CO的交點(diǎn),通過(guò)分析發(fā)現(xiàn)∠BOC=90°+ ∠A,理由如下:
∵BO和CO分別是∠ABC與∠ACB的平分線,
∴∠1= ∠ABC,∠2= ∠ACB;
∴∠1+∠2= (∠ABC+∠ACB)= (180°﹣∠A)=90°﹣ ∠A,
∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣ ∠A)=90°+ ∠A.

(1)探究二:如圖2中,已知O是∠ABC與外角∠ACD的平分線BO和CO的交點(diǎn),試分析∠BOC與∠A有怎樣的關(guān)系?并說(shuō)明理由.
(2)探究二:如圖3中,已知O是外角∠DBC與外角∠ECB的平分線BO和CO的交點(diǎn),試分析∠BOC與∠A有怎樣的關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,點(diǎn)B、E分別在AC、DF上,BDCE均與AF相交,∠1=∠2∠C=∠D,求證:∠A=∠F

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=﹣(x12+2的頂點(diǎn)坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】買一個(gè)足球需要m元,買一個(gè)籃球需要n元,則買4個(gè)足球、7個(gè)籃球共需( 。

A.28mnB.11mn元 C.(7m+4n)元 D.(4m+7n)元

查看答案和解析>>

同步練習(xí)冊(cè)答案