一天小明和冬冬利用溫差來測量山峰的高度.冬冬在山腳測得的溫度是4℃,小明此時(shí)在山頂測得的溫度是-12℃,已知該地區(qū)高度每升高100米,氣溫下降0.8℃,這個(gè)山峰高多少米?
考點(diǎn):有理數(shù)的混合運(yùn)算
專題:應(yīng)用題
分析:根據(jù)題意列出算式,計(jì)算即可得到結(jié)果.
解答:解:根據(jù)題意得:100×{[4-(-12)]÷0.8}=2000(米),
則山高2000米.
點(diǎn)評:此題考查了有理數(shù)的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

下列說法中錯(cuò)誤的是( 。
A、平行四邊形兩條對角線互相平分
B、矩形兩條對角線垂直
C、正方形兩條對角線垂直且相等
D、菱形兩條對角線互相垂直

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖(1),點(diǎn)P是正方形ABCD的邊CD上一點(diǎn)(點(diǎn)P與點(diǎn)C,D不重合),點(diǎn)E在BC的延長線上,且CE=CP,連接BP,DE.求證:△BCP≌△DCE;

(2)如圖(2),直線EP交AD于F,連接BF,F(xiàn)C.FC與BP交與點(diǎn)G.
①若點(diǎn)P是CD中點(diǎn)時(shí),判斷CF與BP的關(guān)系,并說明理由.
②若CD=4,CP=1,求△BPF的面積和△DPE的面積.
③若CD=n•PC(n是大于1的實(shí)數(shù))時(shí),記△BPF的面積為S1,△DPE的面積為S2.則
S1
S2
=
 
(不需要證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖的曲線表示周末班主任帶學(xué)生步行去動(dòng)物園游玩的情況,圖象表示學(xué)生離校的距離y千米與從出發(fā)開始第x小時(shí)的關(guān)系.根據(jù)這個(gè)圖象,回答下列問題:
(1)學(xué)校距動(dòng)物園為
 
千米;
(2)回學(xué)校時(shí)速度為
 
千米/小時(shí);
(3)寫出學(xué)生回學(xué)校時(shí)y與x的關(guān)系式
 

(4)當(dāng)x=3小時(shí)時(shí),學(xué)生離校的距離為
 
千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:Rt△ABC中,∠C=90°,兩條直角邊AC=2,BC=4.如圖(1),BC在x軸上,點(diǎn)A在反比例函數(shù)y=
6
x
第一象限的分支上,AB與y軸交于點(diǎn)D,記四邊形ACOD面積為S1;如圖(2)點(diǎn)B在反比例函數(shù)y=
6
x
第一象限的分支上,AC在x軸上,AB與y軸交于點(diǎn)E,記四邊形BCOE面積為S2.試比較S1與S2的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,E是CD邊上任意一點(diǎn)(不與點(diǎn)C,D重合),作AF⊥AE交CB的延長線于點(diǎn)F.
(1)求證:△ADE∽△ABF;
(2)連接EF,M為EF的中點(diǎn),AB=4,AD=2,設(shè)DE=x,
①求點(diǎn)M到FC的距離(用含x的代數(shù)式表示);
②連接BM,設(shè)BM2=y,求y與x之間的函數(shù)關(guān)系式,并直接寫出BM的長度的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖1,直線y=x+2與x軸負(fù)半軸、y軸正半軸分別交于點(diǎn)A、B,與雙曲線y=
k
x
交于第一象限內(nèi)的點(diǎn)P,且S△PBO=1,點(diǎn)C與點(diǎn)B關(guān)于x軸對稱.
(1)求k的值;
(2)如圖2,N為x軸正半軸上一點(diǎn),過A、P、N的圓與直線AC交于點(diǎn)Q,QM⊥x軸于M,求MN的長;
(3)如圖3,D為線段AO上一動(dòng)點(diǎn),連BD,將線段BD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°,B點(diǎn)的對應(yīng)點(diǎn)為E,直線CE與x軸交于F,求
DO
EF
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

定義:只有一組對角是直角的四邊形叫做損矩形,連結(jié)它的兩個(gè)非直角頂點(diǎn)的線段叫做這個(gè)損矩形的直徑.
(1)如圖1,損矩形ABCD,∠ABC=∠ADC=90°,則該損矩形的直徑是線段
 

(2)在線段AC上確定一點(diǎn)P,使損矩形的四個(gè)頂點(diǎn)都在以P為圓心的同一圓上(即損矩形的四個(gè)頂點(diǎn)在同一個(gè)圓上),請作出這個(gè)圓,并說明你的理由.友情提醒:“尺規(guī)作圖”不要求寫作法,但要保留作圖痕跡.
(3)如圖2,△ABC中,∠ABC=90°,以AC為一邊向形外作菱形ACEF,D為菱形ACEF的對角線交點(diǎn),連結(jié)BD,當(dāng)BD平分∠ABC時(shí),則四邊形ACEF為
 
(填特殊的四邊形名稱)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

P為以r為半徑的⊙O外一點(diǎn),T是⊙O上一點(diǎn),PO交⊙O于A點(diǎn),cos∠OPT=
3
2
,∠OAT=60°,PBC為⊙O割線
(1)求證:PT是切線;
(2)設(shè)PB為x,PC為y求y與x的函數(shù)關(guān)系式,并指出x的取值范圍;
(3)由(2)中,若x、y是關(guān)于z的方程4z2-14rz+k=0的兩根,且弦長BC=l,求半徑r.

查看答案和解析>>

同步練習(xí)冊答案