【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣ x+3與坐標(biāo)軸交于A,B兩點(diǎn),設(shè)P,Q分別為AB邊,OB邊上的動(dòng)點(diǎn),它們同時(shí)分別從點(diǎn)A,點(diǎn)O以每秒1個(gè)單位速度向終點(diǎn)B勻速移動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)點(diǎn)也停止移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.

(1)請寫出點(diǎn)A,點(diǎn)B的坐標(biāo);
(2)試求△OPQ的面積S與移動(dòng)時(shí)間t之間的函數(shù)關(guān)系式,當(dāng)t為何值時(shí),S有最大值?并求出S的最大值;
(3)試證明無論t為何值,△OPQ都不會(huì)是等邊三角形;
(4)將△OPQ沿直線PQ折疊,得到△O′PQ,問:△OPQ和O′PQ能否拼成一個(gè)三角形?若能,求出點(diǎn)O′的坐標(biāo);若不能,請說明理由.

【答案】
(1)

解:當(dāng)x=0時(shí),y=3,即A(0.3),當(dāng)y=0時(shí),﹣ x+3=0,即B(4,0);


(2)

解:如圖1:作PD⊥x軸于D.

,

OQ=t,AP=t,PB=5﹣t,

sin∠B= = ,

PD=PBsin∠B= (5﹣t),

S= OQPD= t(5﹣t)=﹣ t2+ t,

當(dāng)t= 時(shí),s最大= ;


(3)

證明:∵OP=OQ=AP=PQ,∠POQ=∠OPQ=60°,

∴∠AOP=∠PAO=30°,

∴∠APO=120°,

∴∠BPQ=60°與∠OPQ=60°矛盾,

∴∠OPQ≠60°,即△OPQ都不會(huì)是等邊三角形;


(4)

解:△OPQ和O′PQ不能拼成一個(gè)三角形,理由如下:

如圖2,作PE⊥y軸于E點(diǎn).

,

∵AP=OQ>PE,

∴PQ∥y軸,

∴O點(diǎn)關(guān)于PQ的對稱點(diǎn)O′不在x軸上,

∴O、Q、O′不在同一條直線上,

∴OPO′Q是四邊形,

△OPQ和O′PQ不能拼成一個(gè)三角形.


【解析】(1)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得答案;(2)根據(jù)三角函數(shù),可得PD的長,根據(jù)三角形的面積公式,可得函數(shù)解析式,根據(jù)二次函數(shù)的性質(zhì),可得答案;(3)根據(jù)等邊三角形的性質(zhì),可得∠POQ=∠OPQ=60°,根據(jù)等腰三角形的性質(zhì),可得∠APO=120°,再根據(jù)鄰補(bǔ)角,可得∠QPB的度數(shù),根據(jù)∠QPB與∠OPQ的關(guān)系,可得答案;(4)根據(jù)軸對稱的性質(zhì),可得O點(diǎn)關(guān)于PQ的對稱點(diǎn)O′不在x軸上,根據(jù)四邊形的定義,可得答案.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等腰三角形的性質(zhì)(等腰三角形的兩個(gè)底角相等(簡稱:等邊對等角)),還要掌握軸對稱的性質(zhì)(關(guān)于某條直線對稱的兩個(gè)圖形是全等形;如果兩個(gè)圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線;兩個(gè)圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】5分)已知AB兩地相距200千米,一輛汽車以每小時(shí)60千米的速度從A地勻速駛往B地,到達(dá)B地后不再行駛,設(shè)汽車行駛的時(shí)間為x小時(shí),汽車與B地的距離為y千米.

1)求yx的函數(shù)關(guān)系,并寫出自變量x的取值范圍;

2)當(dāng)汽車行駛了2小時(shí)時(shí),求汽車距B地有多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,∠3=∠B,∠1+∠2=180°,∠AED=∠C大小相等嗎?請說明理由.

請完成填空并補(bǔ)充完整.

解:因?yàn)椤?/span>1+∠2=180°(已知)

又因?yàn)椤?/span>2+∠   =180°(鄰補(bǔ)角的意義)

所以∠1=∠      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,在在△ABC中,已知∠BAC=900,AB=AC,點(diǎn)DBC上,且BD=BA,點(diǎn)EBC的延長線上,CE=CA,求∠DAE的度數(shù);

(2)如果把(1)中的“AB=AC”條件去掉,其余條件不變,那么∠DAE的度數(shù)改變嗎?為什么?

(3)如果把(1)中的“∠BAC=900”改成“∠BAC>900其余條件不變,試探究∠DAE∠BAC的數(shù)量關(guān)系式,試證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABP是等腰三角形,AB=BP,以AB為直徑的⊙O交AP于點(diǎn)D,交BP于點(diǎn)C,連接BD交AC于點(diǎn)G,直線MN過點(diǎn)A,且∠PAM= ∠ABP.

(1)試說明直線MN是⊙O的切線.
(2)過D作DE⊥AB于E,交AC于F,求證:△DFG是等腰三角形.
(3)連結(jié)FO,過點(diǎn)O作OQ⊥FO交BP于點(diǎn)Q,連結(jié)FQ,求證:FQ2=AF2+BQ2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖可以近似地刻畫下列哪個(gè)情景(  )

A. 小明勻速步行上學(xué)時(shí)離學(xué)校的距離與時(shí)間的關(guān)系

B. 勻速行駛的汽車的速度與時(shí)間的關(guān)系

C. 小亮媽媽到超市購買蘋果的總費(fèi)用與蘋果質(zhì)量的關(guān)系

D. 一個(gè)勻速上升的氣球的高度與時(shí)間的關(guān)系

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們經(jīng)常遇到需要分類的問題,畫“樹形圖”可以幫我們不重復(fù)、不遺漏地分類.

(例題)在等腰三角形ABC中,若A=80°,求B的度數(shù).

∠A、∠B都可能是頂角或底角,因此需要分成如圖1所示的3類,這樣的圖就是樹形圖,據(jù)此可求出∠B=

(應(yīng)用)

(1)已知等腰三角形ABC周長為19,AB=7,仿照例題畫出樹形圖,并直接寫出BC的長度;

(2)將一個(gè)邊長為5、12、13的直角三角形拼上一個(gè)三角形后可以拼成一個(gè)等腰三角形,圖2就是其中的一種拼法,請你畫出其他所有可能的情形,并在圖上標(biāo)出所拼成等腰三角形的腰的長度.(選用圖3中的備用圖畫圖,每種情形用一個(gè)圖形單獨(dú)表示,并用①、②、③…編號,若備用圖不夠,請自己畫圖補(bǔ)充)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于點(diǎn)0,OE平分∠BODOF平分∠COE.∠BOF=30°,求:(1)∠EOD的度數(shù);(2)∠AOC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案