【題目】已知點(diǎn)A(﹣4,8)和點(diǎn)B(2,n)在拋物線y=ax2上.
(Ⅰ)求該拋物線的解析式和頂點(diǎn)坐標(biāo),并求出n的值;
(Ⅱ)求點(diǎn)B關(guān)于x軸對(duì)稱點(diǎn)P的坐標(biāo),并在x軸上找一點(diǎn)Q,使得AQ+QB最短,求此時(shí)點(diǎn)Q的坐標(biāo);
(Ⅲ)平移拋物線y=ax2,記平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)為A',點(diǎn)B的對(duì)應(yīng)點(diǎn)為B',點(diǎn)C(﹣2,0)是x軸上的定點(diǎn).
①當(dāng)拋物線向左平移到某個(gè)位置時(shí),A'C+CB'最短,求此時(shí)拋物線的解析式;
②D(﹣4,0)是x軸上的定點(diǎn),當(dāng)拋物線向左平移到某個(gè)位置時(shí),四邊形A'B'CD的周長(zhǎng)最短,求此時(shí)拋物線的解析式(直接寫出結(jié)果即可).
【答案】(I)y=;(0,0);2;(II)P(2,﹣2);Q(,0);(III)①y=(x+)2;②y=(x+)2.
【解析】
(I)把(﹣4,8)代入y=ax2可求得a的值,可得拋物線的解析式,這條拋物線的頂點(diǎn)是原點(diǎn),把x=2代入所求的拋物線解析式,可得n的值;
(II)求得AP與x軸的交點(diǎn)即為Q的坐標(biāo);
(III)①先計(jì)算CQ的長(zhǎng),可知平移的距離和方向,用頂點(diǎn)式設(shè)出相應(yīng)的函數(shù)解析式,把新頂點(diǎn)坐標(biāo)代入即可;
②左右平移時(shí),使A′D+DB′′最短即可,那么作出點(diǎn)A′關(guān)于x軸對(duì)稱點(diǎn)的坐標(biāo)為A′′,得到直線A′′B′′的解析式,將點(diǎn)D的坐標(biāo)代入,可得b的值,同理用頂點(diǎn)式設(shè)出相應(yīng)的函數(shù)解析式,把新頂點(diǎn)坐標(biāo)代入即可.
解:(I)將點(diǎn)A(﹣4,8)的坐標(biāo)代入y=ax2,
解得a=,
∴拋物線的解析式是y=,頂點(diǎn)坐標(biāo)是(0,0),
將點(diǎn)B(2,n)的坐標(biāo)代入y=x2,得n==2;
(II)由(I)知:點(diǎn)B的坐標(biāo)為(2,2),
則點(diǎn)B關(guān)于x軸對(duì)稱點(diǎn)P的坐標(biāo)為(2,﹣2),
如圖1,連接AP與x軸的交點(diǎn)為Q,此時(shí)AQ+BQ最小,
設(shè)直線AP的解析式為y=kx+b,,
解得:
∴直線AP的解析式是y=﹣x+,
令y=0,得x=,
即所求點(diǎn)Q的坐標(biāo)是(,0);
(III)①∵點(diǎn)C(﹣2,0),點(diǎn)Q的坐標(biāo)是( ,0)
∴CQ=﹣(﹣2)=,
故將拋物線y=x2向左平移個(gè)單位時(shí),A′C+CB′最短,
此時(shí)拋物線的函數(shù)解析式為y=(x+)2;
②左右平移拋物線y=x2,
∵線段A′B′和CD的長(zhǎng)是定值,
∴要使四邊形A′B′CD的周長(zhǎng)最短,只要使A′D+CB′最短;
第一種情況:如果將拋物線向右平移,顯然有A′D+CB′在增大,
∴不存在某個(gè)位置,使四邊形A′B′CD的周長(zhǎng)最短;
第二種情況:設(shè)拋物線向左平移了b個(gè)單位,如圖2,
則點(diǎn)A′和點(diǎn)B′的坐標(biāo)分別為A′(﹣4﹣b,8)和B′(2﹣b,2).
∵CD=2,
∴將點(diǎn)B′向左平移2個(gè)單位得B′′(﹣b,2),要使A′D+CB′最短,只要使A′D+DB′′最短,
∵點(diǎn)A′關(guān)于x軸對(duì)稱點(diǎn)的坐標(biāo)為A′′(﹣4﹣b,﹣8),
由A'和B'兩點(diǎn)的坐標(biāo)得:直線A′′B′′的解析式為y=x+b+2.
要使A′D+DB′′最短,點(diǎn)D應(yīng)在直線A′′B′′上,
將點(diǎn)D(﹣4,0)代入直線A′′B′′的解析式,解得b=.
∴將拋物線向左平移時(shí),存在某個(gè)位置,使四邊形A′B′CD的周長(zhǎng)最短,
此時(shí)拋物線的函數(shù)解析式為y=(x+)2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知點(diǎn)、在直線上,且,于點(diǎn),且,以為直徑在的左側(cè)作半圓,于,且,
(1)若半圓上有一點(diǎn),則的最大值為__________,最小值為__________;
(2)向右沿直線平移得到;
①如圖2,若截半圓的弧的長(zhǎng)為,求的度數(shù);
②當(dāng)半圓與的邊相切時(shí),求平移距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(﹣1,0)、點(diǎn)B(3,0)、點(diǎn)C(4,y1),若點(diǎn)D(x2,y2)是拋物線上任意一點(diǎn),有下列結(jié)論:
①二次函數(shù)y=ax2+bx+c的最小值為﹣4a;
②若﹣1≤x2≤4,則0≤y2≤5a;
③若y2>y1,則x2>4;
④一元二次方程cx2+bx+a=0的兩個(gè)根為﹣1和
其中正確結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“勤勞”是中華民族的傳統(tǒng)美德,學(xué)校要求同學(xué)們?cè)诩依飵椭改缸鲆恍┝λ芗暗募覄?wù).在本學(xué)期開學(xué)初,小穎同學(xué)隨機(jī)調(diào)查了部分同學(xué)寒假在家做家務(wù)的總時(shí)間,設(shè)被調(diào)查的每位同學(xué)寒假在家做家務(wù)的總時(shí)間為x小時(shí),將做家務(wù)的總時(shí)間分為五個(gè)類別:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并將調(diào)查結(jié)果制成如下兩幅不完整的統(tǒng)計(jì)圖:
根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:
(1)本次共調(diào)查了 名學(xué)生;
(2)請(qǐng)根據(jù)以上信息直接在答題卡中補(bǔ)全條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中m的值是 ,類別D所對(duì)應(yīng)的扇形圓心角的度數(shù)是 度;
(4)若該校有800名學(xué)生,根據(jù)抽樣調(diào)查的結(jié)果,請(qǐng)你估計(jì)該校有多少名學(xué)生寒假在家做家務(wù)的總時(shí)間不低于20小時(shí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為3,且∠EDF=45°,將△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM.若AE=1,則FM的長(zhǎng)為______
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線段AB=4,點(diǎn)C為線段AB上任意一點(diǎn)(與端點(diǎn)不重合),分別以AC、BC為邊在AB的同側(cè)作正方形ACDE和正方形CBGF,分別連接BF、EG交于點(diǎn)M,連接CM,設(shè)AC=x,S四邊形ACME=y,則y與x的函數(shù)表達(dá)式為y=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,且AC⊥BD,AC=BD,SABCD=8cm2,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),則四邊形EFGH的周長(zhǎng)等于______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC,垂足為F,連接DF,則下列四個(gè)結(jié)論中,錯(cuò)誤的是( )
A. △AEF~△CABB. CF=2AFC. DF=DCD. tan∠CAD=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC為等邊三角形,點(diǎn)P是線段AC上一動(dòng)點(diǎn)(點(diǎn)P不與A,C重合),連接BP,過(guò)點(diǎn)A作直線BP的垂線段,垂足為點(diǎn)D,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到線段AE,連接DE,CE.
(1)求證:BD=CE;
(2)延長(zhǎng)ED交BC于點(diǎn)F,求證:F為BC的中點(diǎn);
(3)在(2)的條件下,若△ABC的邊長(zhǎng)為1,直接寫出EF的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com