【題目】如圖,某翼裝飛行員從離水平地面高AC=500m的A處出發(fā),沿著俯角為15°的方向,直線滑行1600米到達(dá)D點,然后打開降落傘以75°的俯角降落到地面上的B點.求他飛行的水平距離BC(結(jié)果精確到1m).

【答案】解:過點D作DE⊥AC于點E,過點D作DF⊥BC于點F,

由題意可得:∠ADE=15°,∠BDF=15°,AD=1600m,AC=500m,

∴cos∠ADE=cos15°= ≈0.97,

≈0.97,

解得:DE=1552(m),

sin15°= ≈0.26,

≈0.26,

解得;AE=416(m),

∴DF=500﹣416=84(m),

∴tan∠BDF=tan15°= ≈0.27,

≈0.27,

解得:BF=22.68(m),

∴BC=CF+BF=1552+22.68=1574.68≈1575(m),

答:他飛行的水平距離為1575m.


【解析】過點D作DE⊥AC、DF⊥BC,垂足分為點E,點F,然后依據(jù)銳角三角函數(shù)關(guān)系求出DE、AE的長,依據(jù)矩形的性質(zhì)可得到DF的長,然后利用銳角三角函數(shù)的定義求得BF的長,最后,依據(jù)BC=CF+BF求解即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組在全校范圍內(nèi)隨機抽取了50名同學(xué)進(jìn)行“舌尖上的長沙﹣我最喜愛的長沙小吃”調(diào)查活動,將調(diào)查問卷整理后繪制成如圖所示的不完整條形統(tǒng)計圖:

請根據(jù)所給信息解答以下問題:
(1)請補全條形統(tǒng)計圖;
(2)若全校有2000名同學(xué),請估計全校同學(xué)中最喜愛“臭豆腐”的同學(xué)有多少人?
(3)在一個不透明的口袋中有四個完全相同的小球,把它們分別標(biāo)號為四種小吃的序號A、B、C、D,隨機地摸出一個小球然后放回,再隨機地摸出一個小球,請用列表或畫樹形圖的方法,求出恰好兩次都摸到“A”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A、B兩地相距4km,上午800時,亮亮從A地步行到B地,820時芳芳從B地出發(fā)騎自行車到A地,亮亮和芳芳兩人離A地的距離Skm)與亮亮所用時間tmin)之間的函數(shù)關(guān)系如圖所示,芳芳到達(dá)A地時間為(

A. 830 B. 835 C. 840 D. 845

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對角線AC,BD相交于O,EF過點O與AD,BC分別相交于E,F(xiàn),若AB=4,BC=5,OE=1.5,那么四邊形EFCD的周長為( )

A.16
B.14
C.12
D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為開展陽光體育活動,某班需要購買一批羽毛球拍和羽毛球,現(xiàn)了解情況如下:甲、乙兩家商店岀售同樣品牌的羽毛球拍和羽毛球,羽毛球拍毎副定價30元,羽毛球每盒定價5元,且兩家都有優(yōu)惠:甲店每買一副球拍贈一盒羽毛球;乙店全部按定價的9折優(yōu)惠.

(1)若該班需購買羽毛球拍5副,購買羽毛球(不小于5).當(dāng)購買多少盒羽毛球時,在兩家商店購買所花的錢相等?

(2)若需購買10副羽毛球拍,30盒羽毛球,怎樣購買更省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將長為,寬為的長方形白紙,,按圖所示的方法粘合起來,粘合部分的寬為厘米.

1)根據(jù)題意,將表格補充完整.

白紙張數(shù)

……

紙條長度

_______

_______

……

2)設(shè)張白紙粘合后的總長度為厘米,寫出之間的關(guān)系式;并求出張白紙粘合后的總長度.

3)若粘合后的總長度為,問需要多少張白紙?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的不等式組整數(shù)解為1、2,如果把適合這個不等式組的整數(shù)組成有序數(shù)對,那么對應(yīng)在平面直角坐標(biāo)系上的點共有的個數(shù)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,A,B分別在射線OA,ON上,且∠MON為鈍角,現(xiàn)以線段OA,OB為斜邊向∠MON的外側(cè)作等腰直角三角形,分別是△OAP,△OBQ,點C,D,E分別是OA,OB,AB的中點.

(1)求證:△PCE≌△EDQ;
(2)延長PC,QD交于點R.如圖2,若∠MON=150°,求證:△ABR為等邊三角形;

(3)如圖3,若△ARB∽△PEQ,求∠MON大小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,BE=CE,MN=1,線段MN的兩端點在CD、AD上滑動,當(dāng)DM為( )時,△ABE與以D、M、N為頂點的三角形相似.

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案