【題目】如圖,已知動點A在反比例函數(shù)y(x0)的圖象上,直線PQx軸,y軸交于PQ兩點,過點ACDx軸,交y軸于點C,交直線PQ于點D,過點AEBy軸交x軸于點B,交直線PQ于點E,若CEBDCAAE12,QEDP19,則陰影部分的面積為______

【答案】10

【解析】

DMOPM,ENOQN,設點A(a,b),則ab6,由ACE∽△ADB,得ADb,由QNE∽△DMP,得QNb,MP9a,由EAD∽△DMP,得,即,所以b6a,解得a1,b6,即可求得陰影部分的面積.

解:如圖,作DMOPM,ENOQN,

設點A(a,b),

∵點A在反比例函數(shù)y(x0)的圖象上,

ab6,

CEBDCAAE12

∴△ACE∽△ADB,

,

ADb,

NEOP,

∴∠QEN=∠DPM,

∵∠QNE=∠DMP90°,

QNE∽△DMP,

,

QNb,MP9a

CDx軸,EBy軸,

∴△EAD∽△DMP,

,即,

b6a,

a1,b6,

∴陰影部分的面積=

故答案為:10

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊△BCP在正方形ABCD內(nèi),則∠APD_____度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD與四邊形CEFG都是矩形,點E,G分別在邊CDCB上,點FAC上,AB3BC4

1)求的值;

2)把矩形CEFG繞點C順時針旋轉(zhuǎn)到圖的位置,PAFBG的交點,連接CP

(Ⅰ)求的值;

(Ⅱ)判斷CPAF的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于的方程有兩個實數(shù)根、

1求實數(shù)k的取值范圍;

2、滿足,求實數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,直線與圓有三種位置關系:相交、相切、相離.類比直線與圓的位置關系,給出如下定義:與坐標軸不平行的直線與拋物線有兩個公共點叫做直線與拋物線相交;直線與拋物線有唯一的公共點叫做直線與拋物線相切,這個公共點叫做切點;直線與拋物線沒有公共點叫做直線與拋物線相離.

(1)記一次函數(shù)的圖像為直線,二次函數(shù)的圖像為拋物線,若直線與拋物線相交,求的取值范圍;

(2)若二次函數(shù)的圖像與軸交于點、,與軸交于點,直線lCB平行,并且與該二次函數(shù)的圖像相切,求切點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,AC是邊長為6的菱形ABCD的對角線,∠ABC=∠PAQ60°,∠PAQ繞點A旋轉(zhuǎn),射線APAQ分別交邊BC、CD于點E、F,連接EF.請?zhí)骄浚?/span>

(1)在旋轉(zhuǎn)過程中,線段AE、AF有怎樣的數(shù)量關系?并說明理由;

(2)在旋轉(zhuǎn)過程中,△AEF的面積是否存在最小值?若存在,請求出最小值,若不存在,請說明理由

(3)如圖2,將∠PAQ沿著AC向下平移至點A處,使CA′AA′21,在∠PA′Q繞點A′旋轉(zhuǎn)過程中,始終保持∠ABC=∠PA′Q,射線A′PA′Q分別交直線BC、CD于點EF,連接EF.當SA′EFS菱形ABCD1918時,直接寫出線段CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖點A在反比例函數(shù)yx0)的圖象上,作RtABC,直角邊BCx軸上,點D為斜邊AC的中點,直線BDy軸于點E,若BCE的面積為8,則k_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,把繞著點逆時針旋轉(zhuǎn),得到,點.

1)若,求得度數(shù);

2)若,,求邊上的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠B=60°,對角線AC平分角∠BAD,點P是△ABC內(nèi)一點,連接PA、PB、PC,若PA=6,PB=8,PC=10,則菱形ABCD的面積等于_____

查看答案和解析>>

同步練習冊答案