【題目】如圖,在平面直角坐標系中xOy中,已知點A(0,1),以OA為邊在右側作等邊三角形OAA1 , 再過點A1作x軸的垂線,垂足為點O1 , 以O1A1為邊在右側作等邊三角形O1A1A2;…按此規(guī)律繼續(xù)作下去,得到等邊三角形O2016A2016A2017 , 則點A2017的縱坐標為( )

A.( 2017
B.( 2016
C.( 2015
D.( 2014

【答案】A
【解析】解:∵三角形OAA1是等邊三角形,

∴OA1=OA=1,∠AOA1=60°,

∴∠O1OA1=30°.

在直角△O1OA1中,∵∠OO1A1=90°,∠O1OA1=30°,

∴O1A1= OA1= ,即點A1的縱坐標為

同理,O2A2= O1A2=( 2,O3A3= O2A3=( 3,

即點A2的縱坐標為( 2,

點A3的縱坐標為( 3,

∴點A2017的縱坐標為( 2017

故選A.

【考點精析】利用數(shù)與式的規(guī)律對題目進行判斷即可得到答案,需要熟知先從圖形上尋找規(guī)律,然后驗證規(guī)律,應用規(guī)律,即數(shù)形結合尋找規(guī)律.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了提高產(chǎn)品的附加值,某公司計劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進行精加工后再投放市場.現(xiàn)有甲、乙兩個工廠都具備加工能力,公司派出相關人員分別到這兩個工廠了解情況,獲得如下信息:

信息一:甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用10天;

信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.

根據(jù)以上信息,求甲、乙兩個工廠每天分別能加工多少件新產(chǎn)品.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,ABCD,BCCD,E是AD的中點,連結BE并延長交CD的延長線于點F.

(1)請連結AF、BD,試判斷四邊形ABDF是何種特殊四邊形,并說明理由.

(2)若AB=4,BC=5,CD=6,求BCF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是小東設計的“作邊上的高線”的尺規(guī)作圖過程.

已知:.

求作:邊上的高線.

作法:如圖,

①以點為圓心,的長為半徑作弧,以點為圓心,的長為半徑作弧,兩弧在下方交于點;

②連接于點.

所以線段邊上的高線.

根據(jù)小東設計的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

(2)完成下面的證明.

證明:∵    ,

∴點分別在線段的垂直平分線上(  )(填推理的依據(jù)).

垂直平分線段.

∴線段邊上的高線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)閱讀思考:

小迪在學習過程中,發(fā)現(xiàn)數(shù)軸上兩點間的距離可以用表示這兩點數(shù)的差來表示,探索過程如下:

如圖1所示,線段AB,BCCD的長度可表示為:AB341,BC54﹣(﹣1),CD3=(﹣1)﹣(﹣4),于是他歸納出這樣的結論:如果點A表示的數(shù)為a,點B表示的數(shù)為b,當ba時,ABba(較大數(shù)﹣較小數(shù)).

2)嘗試應用:

①如圖2所示,計算:OE   ,EF   ;

②把一條數(shù)軸在數(shù)m處對折,使表示﹣192019兩數(shù)的點恰好互相重合,則m   ;

3)問題解決:

①如圖3所示,點P表示數(shù)x,點M表示數(shù)﹣2,點N表示數(shù)2x+8,且MN4PM,求出點P和點N分別表示的數(shù);

②在上述①的條件下,是否存在點Q,使PQ+QN3QM?若存在,請直接寫出點Q所表示的數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,點分別在邊上,相交于點,如果已知,那么還不能判定,補充下列一個條件后,仍無法判定的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,D是邊AC上一點,連接BD,使∠A=2∠1,點E是BC上的一點,以BE為直徑的⊙O經(jīng)過點D.

(1)求證:AC是⊙O的切線;
(2)若∠A=60°,⊙O的半徑為2,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某農(nóng)戶以1500元/畝的單價承包了15畝地種植板栗,每畝種植80株優(yōu)質(zhì)板栗嫁接苗,購買嫁接苗,購買價格為5元/株,且每畝地的管理費用為800元,一年下來喜獲豐收平均每畝板栗產(chǎn)量為600kg,已知當?shù)匕謇醯呐l(fā)和;零售價格分別如下表所示:

銷售方式

批發(fā)

零售

售價(元/kg)

10

14

通過市場調(diào)研發(fā)現(xiàn),批發(fā)與零售的總銷量只能達到總產(chǎn)量的70%,其中零售量不高于總銷售量的40%,經(jīng)多方協(xié)調(diào)當?shù)厥称芳庸S承諾以7元/kg的價格收購該農(nóng)戶余下的板栗,設板栗全部售出后的總利潤為y元,其中零售x kg.

(1)求y與x之間的函數(shù)關系

(2)求該農(nóng)戶所收獲的最大利潤

(總利潤=總銷售額-總承包費用-購買板栗苗的費用-總管理費用)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等腰三角形ABC在平面直角坐標系中的位置如圖所示,已知點A(﹣6,0),點B在原點,CA=CB=5,把等腰三角形ABC沿x軸正半軸作無滑動順時針翻轉,第一次翻轉到位置①,第二次翻轉到位置②…依此規(guī)律,第15次翻轉后點C的橫坐標是

查看答案和解析>>

同步練習冊答案