【題目】如圖,AB是⊙O的直徑,DD為⊙O上兩點(diǎn),CFAB于點(diǎn)F,CEADAD的延長(zhǎng)線于點(diǎn)E,且CE=CF.

1)求證:CE是⊙O的切線;

2)連接CD、CB,若AD=CD=a,求四邊形ABCD面積.

【答案】1)證明見(jiàn)解析;(2

【解析】

1)連接OC,AC,可先證明AC平分∠BAE,結(jié)合圓的性質(zhì)可證明OCAE,可得∠OCB90°,可證得結(jié)論;

2)可先證得四邊形AOCD為平行四邊形,再證明△OCB為等邊三角形,可求得CF、AB,利用梯形的面積公式可求得答案.

1)證明:連接OC,AC

CFAB,CEAD,且CECF

∴∠CAE=∠CAB

OCOA,

∴∠CAB=∠OCA

∴∠CAE=∠OCA

OCAE

∴∠OCE+∠AEC180°,

∵∠AEC90°,

∴∠OCE90°即OCCE,

OC是⊙O的半徑,點(diǎn)C為半徑外端,

CE是⊙O的切線.

2)解:∵ADCD

∴∠DAC=∠DCA=∠CAB,

DCAB,

∵∠CAE=∠OCA

OCAD,

∴四邊形AOCD是平行四邊形,

OCADa,AB2a,

∵∠CAE=∠CAB,

CDCBa

CBOCOB,

∴△OCB是等邊三角形,

RtCFB中,CF

S四邊形ABCD DCABCF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在一次數(shù)學(xué)興趣小組活動(dòng)中,對(duì)一個(gè)數(shù)學(xué)問(wèn)題作如下探究:

問(wèn)題情境:如圖1,四邊形ABCD中,AD∥BC,點(diǎn)EDC邊的中點(diǎn),連結(jié)AE并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)F.求證:S四邊形ABCDSABF.(S表示面積)

問(wèn)題遷移:如圖2,在已知銳角∠AOB內(nèi)有一定點(diǎn)P.過(guò)點(diǎn)P任意作一條直線MN,分別交射線OA、OB于點(diǎn)MN.小明將直線MN繞著點(diǎn)P旋轉(zhuǎn)的過(guò)程中發(fā)現(xiàn),△MON的面積存在最小值.請(qǐng)問(wèn)當(dāng)直線MN在什么位置時(shí),△MON的面積最小,并說(shuō)明理由.

實(shí)際應(yīng)用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部分計(jì)劃以公路OAOB和經(jīng)過(guò)防疫站的一條直線MN為隔離線,建立一個(gè)面積最小的三角形隔離區(qū)△MON.若測(cè)得∠AOB66,∠POB30,OP4km,試求△MON的面積.(結(jié)果精確到0.1km2)(參考數(shù)據(jù):sin66≈0.91,tan66≈2.25,≈1.73

拓展延伸:如圖4,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A、BC、P的坐標(biāo)分別為(6,0)、(6,3)、、(42),過(guò)點(diǎn)P的直線l與四邊形OABC一組對(duì)邊相交,將四邊形OABC分成兩個(gè)四邊形,求其中以點(diǎn)O為頂點(diǎn)的四邊形的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,邊的中線,,連結(jié),點(diǎn)在射線上(與,不重合)

1)如果

①如圖1   

②如圖2,點(diǎn)在線段上,連結(jié),將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn),得到線段,連結(jié),補(bǔ)全圖2猜想、之間的數(shù)量關(guān)系,并證明你的結(jié)論;

2)如圖3,若點(diǎn)在線段 的延長(zhǎng)線上,且,連結(jié),將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線段,連結(jié),請(qǐng)直接寫(xiě)出、三者的數(shù)量關(guān)系(不需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛轎車從甲城駛往乙城,同時(shí)一輛卡車從乙城駛往甲城,兩車沿相同路線勻速行駛,轎車到達(dá)乙城停留一段時(shí)間后按原路返回:卡車到達(dá)甲城比轎車返回甲城早0.5小時(shí),兩車到達(dá)甲城后均停止行駛,兩車距離甲城的路程ykm)與出發(fā)時(shí)間th)之間的關(guān)系如圖1所示,請(qǐng)結(jié)合圖象提供的信息解答下列問(wèn)題:

1)求轎車和卡車的速度;

2)求CD段的函數(shù)解析式;

3)若設(shè)在行駛過(guò)程中,轎車與卡車之間的距離為Skm)行駛的時(shí)間為th),請(qǐng)你在圖2中畫(huà)出Skm)關(guān)于th)函數(shù)的圖象,并標(biāo)出每段函數(shù)圖象端點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】課題學(xué)習(xí):設(shè)計(jì)概率模擬實(shí)驗(yàn).

在學(xué)習(xí)概率時(shí),老師說(shuō):擲一枚質(zhì)地均勻的硬幣,大量重復(fù)實(shí)驗(yàn)后,正面朝上的概率約是.”小海、小東、小英分別設(shè)計(jì)了下列三個(gè)模擬實(shí)驗(yàn):

小海找來(lái)一個(gè)啤酒瓶蓋(如圖1)進(jìn)行大量重復(fù)拋擲,然后計(jì)算瓶蓋口朝上的次數(shù)與總次數(shù)的比值;

小東用硬紙片做了一個(gè)圓形轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)上分成8個(gè)大小一樣的扇形區(qū)域,并依次標(biāo)上18個(gè)數(shù)字(如圖2),轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)10次,然后計(jì)算指針落在奇數(shù)區(qū)域的次數(shù)與總次數(shù)的比值;

小英在一個(gè)不透明的盒子里放了四枚除顏色外都相同的圍棋子(如圖3),其中有三枚是白子,一枚是黑子,從中隨機(jī)同時(shí)摸出兩枚棋子,并大量重復(fù)上述實(shí)驗(yàn),然后計(jì)算摸出的兩枚棋子顏色不同的次數(shù)與總次數(shù)的比值.

根據(jù)以上材料回答問(wèn)題:

小海、小東、小英三人中,哪一位同學(xué)的實(shí)驗(yàn)設(shè)計(jì)比較合理,并簡(jiǎn)要說(shuō)出其他兩位同學(xué)實(shí)驗(yàn)的不足之處.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位有職工200人,其中青年職工(2035歲),中年職工(3550歲),老年職工(50歲及以上)所占比例如扇形統(tǒng)計(jì)圖所示.

為了解該單位職工的健康情況,小張、小王和小李各自對(duì)單位職工進(jìn)行了抽樣調(diào)查,將收集的數(shù)據(jù)進(jìn)行了整理,繪制的統(tǒng)計(jì)表分別為表1、表2和表3

1:小張抽樣調(diào)查單位3名職工的健康指數(shù)

年齡

26

42

57

健康指數(shù)

97

79

72

2:小王抽樣調(diào)查單位10名職工的健康指數(shù)

年齡

23

25

26

32

33

37

39

42

48

52

健康指數(shù)

93

89

90

83

79

75

80

69

68

60

3:小李抽樣調(diào)查單位10名職工的健康指數(shù)

年齡

22

29

31

36

39

40

43

46

51

55

健康指數(shù)

94

90

88

85

82

78

72

76

62

60

根據(jù)上述材料回答問(wèn)題:

小張、小王和小李三人中,誰(shuí)的抽樣調(diào)查的數(shù)據(jù)能夠較好地反映出該單位職工健康情況,并簡(jiǎn)要說(shuō)明其他兩位同學(xué)抽樣調(diào)查的不足之處.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的直徑,直線BMAB于點(diǎn)B,點(diǎn)CO上,分別連接BC,AC,且AC的延長(zhǎng)線交BM于點(diǎn)D,CFO的切線交BM于點(diǎn)F

(1)求證:CFDF;

(2)連接OF,若AB=10,BC=6,求線段OF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)緯文教用品商店欲購(gòu)進(jìn)A、B兩種筆記本,用160元購(gòu)進(jìn)的A種筆記本與用240元購(gòu)進(jìn)的B種筆記本的數(shù)量相同,每本B種筆記本的進(jìn)價(jià)比每本A種筆記本的進(jìn)價(jià)貴10元.

1)求A、B兩種筆記本每本的進(jìn)價(jià)分別為多少元?

2)若該商店A種筆記本每本售價(jià)24元,B種筆記本每本售價(jià)35元,準(zhǔn)備購(gòu)進(jìn)AB兩種筆記本共100本,且這兩種筆記本全部售出后總獲利高于468元,則最多購(gòu)進(jìn)A種筆記本多少本?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為3,點(diǎn)E,F(xiàn)分別在邊BCCD上,BE=CF=1,小球P從點(diǎn)E出發(fā)沿直線向點(diǎn)F運(yùn)動(dòng),完成第1次與邊的碰撞,每當(dāng)碰到正方形的邊時(shí)反彈,反彈時(shí)反射角等于入射角,則小球P與正方形的邊第2次碰撞到__邊上,小球P與正方形的邊完成第5次碰撞所經(jīng)過(guò)的路程為__

查看答案和解析>>

同步練習(xí)冊(cè)答案