【題目】探究數(shù)軸上任意兩點(diǎn)之間的距離與這兩點(diǎn)對(duì)應(yīng)的數(shù)的關(guān)系.

(1)如果點(diǎn)A表示數(shù)5,將點(diǎn)A先向左移動(dòng)4個(gè)單位長(zhǎng)度到達(dá)點(diǎn)B,那么點(diǎn)B表示的數(shù)是  ,A、B兩點(diǎn)間的距離是  

如果點(diǎn)A表示數(shù)﹣2,將點(diǎn)A向右移動(dòng)5個(gè)單位長(zhǎng)度到達(dá)點(diǎn)B,那么點(diǎn)B表示的數(shù)是  ,A、B兩點(diǎn)間的距離是 

(2)發(fā)現(xiàn):在數(shù)軸上,如果點(diǎn)M對(duì)應(yīng)的數(shù)是m,點(diǎn)N對(duì)應(yīng)的數(shù)是n,那么點(diǎn)M與點(diǎn)N之間的距離可表示為  (用m、n表示,且m≥n).

(3)應(yīng)用利用你發(fā)現(xiàn)的結(jié)論解決下列問(wèn)題:數(shù)軸上表示x和﹣2的兩點(diǎn)P與Q之間的距離是3,則x=  

【答案】(1)1, 4 ; 3, 5;(2)m﹣n;(3)1 ,﹣5.

【解析】

由題意得

如果點(diǎn)A表示數(shù)5,點(diǎn)B表示的數(shù)是5-4=1,A、B兩點(diǎn)間的距離是5-(1)=4;

如果點(diǎn)A表示數(shù)﹣2,點(diǎn)B表示的數(shù)是-2+5=3,A、B兩點(diǎn)間的距離是3-(-1)=5;

(2)由m≥n,可得M與點(diǎn)N之間的距離可表示為mn;

(3)x-2左側(cè)與右側(cè)兩種情況,由(2)的公式可得x的值..

: 由題意得

(1)如果點(diǎn)A表示數(shù)5,點(diǎn)B表示的數(shù)是5-4=1,A、B兩點(diǎn)間的距離是5-(1)=4;

如果點(diǎn)A表示數(shù)﹣2,點(diǎn)B表示的數(shù)是-2+5=3,A、B兩點(diǎn)間的距離是3-(-1)=5;

(2)由點(diǎn)M對(duì)應(yīng)的數(shù)是m,點(diǎn)N對(duì)應(yīng)的數(shù)是n,且m≥n,可得M與點(diǎn)N之間的距離可表示為mn;

(3)①當(dāng)x-2左側(cè),可得-2-x=3,可得x=-5;

②當(dāng)x-2左側(cè),可得x-(-2)=3,x=1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知1=2,要得到ABD≌△ACE,從下列條件中補(bǔ)選一個(gè),則錯(cuò)誤的是( )

A.AB=AC B.DB=EC C.ADB=AEC D.B=C

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知E、F是ABCD對(duì)角線(xiàn)AC上的兩點(diǎn),且BE⊥AC,DF⊥AC.
(1)求證:△ABE≌△CDF;
(2)請(qǐng)寫(xiě)出圖中除△ABE≌△CDF外其余兩對(duì)全等三角形(不再添加輔助線(xiàn)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)春外國(guó)語(yǔ)學(xué)校為了創(chuàng)建全省“最美書(shū)屋”,購(gòu)買(mǎi)了一批圖書(shū),其中科普類(lèi)圖書(shū)平均每本的價(jià)格比文學(xué)類(lèi)圖書(shū)平均每本的價(jià)格多5.已知學(xué)校用12000元購(gòu)買(mǎi)的科普類(lèi)圖書(shū)的本數(shù)與用9000元購(gòu)買(mǎi)的文學(xué)類(lèi)圖書(shū)的本數(shù)相等,求學(xué)校購(gòu)買(mǎi)的科普類(lèi)圖書(shū)和文學(xué)類(lèi)圖書(shū)平均每本的價(jià)格各是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)先化簡(jiǎn),再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣

(2)若x2+4x﹣4=0,求3(x﹣2)2﹣6(x+1)(x﹣1)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O是正方形ABCD的對(duì)角線(xiàn)BD上一點(diǎn),⊙O與邊AB,BC都相切,點(diǎn)E,F(xiàn)分別在AD,DC上,現(xiàn)將△DEF沿著EF對(duì)折,折痕EF與⊙O相切,此時(shí)點(diǎn)D恰好落在圓心O處.若DE=2,則正方形ABCD的邊長(zhǎng)是(
A.3
B.4
C.
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一項(xiàng)工程在招標(biāo)時(shí),接到甲、乙兩個(gè)工程隊(duì)的投標(biāo)書(shū).施工一天,需付甲工程隊(duì)工程款1.2萬(wàn)元,乙工程隊(duì)工程款0.5萬(wàn)元.工程領(lǐng)導(dǎo)小組根據(jù)甲、乙兩隊(duì)的投標(biāo)書(shū)測(cè)算,有以下方案:

方案(1):甲隊(duì)單獨(dú)完成這項(xiàng)工程剛好如期完成.

方案(2):乙隊(duì)單獨(dú)完成這項(xiàng)工程要比規(guī)定的日期多用6天.

方案(3):若甲、乙兩隊(duì)合做3天,余下的工程由乙隊(duì)單獨(dú)做也正好如期完成.

試問(wèn):在不耽誤工期的前提下,你覺(jué)得哪一種施工方案最節(jié)省工程款,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在梯形ABCD中,AD∥BC,∠ABC=90°,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O.下列條件中,不能判斷對(duì)角線(xiàn)互相垂直的是(
A.∠1=∠4
B.∠1=∠3
C.∠2=∠3
D.OB2+OC2=BC2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小聰和小明沿同一條筆直的馬路同時(shí)從學(xué)校出發(fā)到某圖書(shū)館查閱資料,學(xué)校與 圖書(shū)館的路程是 千米,小聰騎自行車(chē),小明步行,當(dāng)小聰從原路回到學(xué)校時(shí),小明剛好到 達(dá)圖書(shū)館,圖中折線(xiàn) 和線(xiàn)段 分別表示兩人離學(xué)校的路程 (千米)與所經(jīng)過(guò)的 時(shí)間 (分鐘)之間的函數(shù)關(guān)系,請(qǐng)根據(jù)圖像回答下列問(wèn)題:

(1)小聰在圖書(shū)館查閱資料的時(shí)間為 分鐘;小聰返回學(xué)校的速度為 千米/分鐘.

(2)請(qǐng)你求出小明離開(kāi)學(xué)校的路程 (千米)與所經(jīng)過(guò)的時(shí)間 (分鐘)之間的函數(shù)表達(dá)式;

(3)若設(shè)兩人在路上相距不超過(guò) 千米時(shí)稱(chēng)為可以“互相望見(jiàn)”,則小聰和小明可以“互相 望見(jiàn)”的時(shí)間共有多少分鐘?

查看答案和解析>>

同步練習(xí)冊(cè)答案