【題目】三個(gè)小球分別標(biāo)有﹣2,0,1三個(gè)數(shù),這三個(gè)球除了標(biāo)的數(shù)不同外,其余均相同,將小球放入一個(gè)不透明的布袋中攪勻.
(1)從布袋中任意摸出一個(gè)小球,將小球上所標(biāo)之?dāng)?shù)記下,然后將小球放回袋中,攪勻后再任意摸出一個(gè)小球,再記下小球上所標(biāo)之?dāng)?shù),求兩次記下之?dāng)?shù)的和大于0的概率.(請用“畫樹狀圖”或“列表”等方法給出分析過程,并求出結(jié)果)
(2)從布袋中任意摸出一個(gè)小球,將小球上所標(biāo)之?dāng)?shù)記下,然后將小球放回袋中,攪勻后再任意摸出一個(gè)小球,將小球上所標(biāo)之?dāng)?shù)再記下,…,這樣一共摸了13次.若記下的13個(gè)數(shù)之和等于﹣4,平方和等于14.求:這13次摸球中,摸到球上所標(biāo)之?dāng)?shù)是0的次數(shù).

【答案】
(1)解:根據(jù)題意畫出樹狀圖如下:

所有等可能的情況數(shù)有9種,其中兩次記下之?dāng)?shù)的和大于0的情況有3種,

則P= = ;


(2)解:設(shè)摸出﹣2、0、1的次數(shù)分別為x、y、z,

由題意得, ,

③﹣②得,6x=18,

解得x=3,

把x=3代入②得,﹣2×3+z=﹣4,

解得z=2,

把x=3,z=2代入①得,y=8,

所以,方程組的解是 ,

故摸到球上所標(biāo)之?dāng)?shù)是0的次數(shù)為8.


【解析】(1)根據(jù)題意畫出樹狀圖,然后根據(jù)概率公式列式計(jì)算即可得解;(2)設(shè)摸出﹣2、0、1的次數(shù)分別為x、y、z,根據(jù)摸出的次數(shù)、13個(gè)是的和、平方和列出三元一次方程組,然后求解即可.
【考點(diǎn)精析】通過靈活運(yùn)用列表法與樹狀圖法,掌握當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣ x+1的圖象與x軸、y軸分別交于點(diǎn)A、B,把Rt△AOB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)角α(30°<α<180°),得到△AO′B′.
(1)當(dāng)α=60°時(shí),判斷點(diǎn)B是否在直線O′B′上,并說明理由;
(2)連接OO′,設(shè)OO′與AB交于點(diǎn)D,當(dāng)α為何值時(shí),四邊形ADO′B′是平行四邊形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,一塊等腰直角三角板ABC的直角頂點(diǎn)A在y軸上,坐標(biāo)為(0,﹣1),另一頂點(diǎn)B坐標(biāo)為(﹣2,0),已知二次函數(shù)y= x2+bx+c的圖象經(jīng)過B、C兩點(diǎn).現(xiàn)將一把直尺放置在直角坐標(biāo)系中,使直尺的邊A′D′∥y軸且經(jīng)過點(diǎn)B,直尺沿x軸正方向平移,當(dāng)A′D′與y軸重合時(shí)運(yùn)動停止.

(1)求點(diǎn)C的坐標(biāo)及二次函數(shù)的關(guān)系式;
(2)若運(yùn)動過程中直尺的邊A′D′交邊BC于點(diǎn)M,交拋物線于點(diǎn)N,求線段MN長度的最大值;
(3)如圖②,設(shè)點(diǎn)P為直尺的邊A′D′上的任一點(diǎn),連接PA、PB、PC,Q為BC的中點(diǎn),試探究:在直尺平移的過程中,當(dāng)PQ= 時(shí),線段PA、PB、PC之間的數(shù)量關(guān)系.請直接寫出結(jié)論,并指出相應(yīng)的點(diǎn)P與拋物線的位置關(guān)系.
(說明:點(diǎn)與拋物線的位置關(guān)系可分為三類,例如,圖②中,點(diǎn)A在拋物線內(nèi),點(diǎn)C在拋物線上,點(diǎn)D′在拋物線外.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是兩個(gè)全等的含30°角的直角三角形.
(1)將其相等邊拼在一起,組成一個(gè)沒有重疊部分的平面圖形,請你畫出所有不同的拼接平面圖形的示意圖;
(2)若將(1)中平面圖形分別印制在質(zhì)地、形狀、大小完全相同的卡片上,洗勻后從中隨機(jī)抽取一張,求抽取的卡片上平面圖形為軸對稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD是⊙O的切線,切點(diǎn)為D,CD與AB的延長線交于點(diǎn)C,∠A=30°,給出下面3個(gè)結(jié)論:①AD=CD;②BD=BC;③AB=2BC,其中正確結(jié)論的個(gè)數(shù)是(
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果三角形滿足一個(gè)角是另一個(gè)角的3倍,那么我們稱這個(gè)三角形為“智慧三角形”.下列各組數(shù)據(jù)中,能作為一個(gè)智慧三角形三邊長的一組是(
A.1,2,3
B.1,1,
C.1,1,
D.1,2,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①、②分別是某種型號跑步機(jī)的實(shí)物圖與示意圖,已知踏板CD長為1.6m,CD與地面DE的夾角∠CDE為12°,支架AC長為0.8m,∠ACD為80°,求跑步機(jī)手柄的一端A的高度h(精確到0.1m). (參考數(shù)據(jù):sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正五邊形ABCDE中,對角線AD,AC與EB分別相交于點(diǎn)M,N.下列結(jié)論錯(cuò)誤的是(
A.四邊形EDCN是菱形
B.四邊形MNCD是等腰梯形
C.△AEM與△CBN相似
D.△AEN與△EDM全等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰三角形紙片ABC中,AB=AC=10,BC=12,沿底邊BC上的高AD剪成兩個(gè)三角形,用這兩個(gè)三角形拼成平行四邊形,則這個(gè)平行四邊形較長的對角線的長是

查看答案和解析>>

同步練習(xí)冊答案