【題目】在△ABC中,已知∠CAB60°,D、E分別是邊ABAC上的點,且∠AED60°,ED+DBCE,∠CDB2CDE,則∠DCB等于_____

【答案】20°.

【解析】

延長ABF使BF=AD,連接CF,如圖,先判斷ADE為等邊三角形得到AD=DE=AE,∠ADE=60°,再利用∠CDB=2CDE得到∠CDE=40°,∠CDB=80°,接著證明AF=AC,從而可判斷AFC為等邊三角形,則有CF=AC,∠F=60°,然后證明ACD≌△FCB 得到CB=CD,最后根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和計算∠DCB的度數(shù).

延長ABF使BFAD,連接CF,如圖,

∵∠CAD60°,∠AED60°

∴△ADE為等邊三角形,

ADDEAE,∠ADE60°

∴∠BDE180°﹣∠ADE120°,

∵∠CDB2CDE,

3CDE120°,解得∠CDE40°

∴∠CDB2CDE80°,

BFAD

BFDE,

DE+BDCE,

BF+BDCE,即DFCE,

AFAD+DFACAE+CE,

AFAC

而∠BAC60°,

∴△AFC為等邊三角形,

CFAC,∠F60°,

ACDFCB

∴△ACD≌△FCBSAS),

CBCD,

∴∠CBD=∠CDB80°,

∴∠DCB180﹣(∠CBD+CDB)=20°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】我市中小學全面開展陽光體育活動,某校在大課間中開設(shè)了A:體操,B:跑操,C:舞蹈,D:健美操四項活動,為了解學生最喜歡哪一項活動,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:

1)這次被調(diào)查的學生共有 人.

2)請將統(tǒng)計圖2補充完整.

3)統(tǒng)計圖1B項目對應(yīng)的扇形的圓心角是 度.

4)已知該校共有學生3600人,請根據(jù)調(diào)查結(jié)果估計該校喜歡健美操的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD為正方形,點E為線段AC上一點,連接DE,過點EEF⊥DE,交射線BC于點F,以DE、EF為鄰邊作矩形DEFG,連接CG.

(1)如圖1,求證:矩形DEFG是正方形;

(2)若AB=2,CE=,求CG的長度;

(3)當線段DE與正方形ABCD的某條邊的夾角是30°時,直接寫出∠EFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:在四邊形ABFC中,=90的垂直平分線EFBC于點D,AB于點E,CF=AE

(1)試探究,四邊形BECF是什么特殊的四邊形;

(2)的大小滿足什么條件時,四邊形BECF是正方形?請回答并證明你的結(jié)論.

(特別提醒:表示角最好用數(shù)字)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O的直徑AB的長為2,點C在圓周上,CAB=30°,點D是圓上一動點,DEAB交CA的延長線于點E,連接CD,交AB于點F.

(1)如圖1,當ACD=45°時,求證:DE是O的切線;

(2)如圖2,當點F是CD的中點時,求CDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在四邊形ABCD中,∠F為四邊形ABCD的∠ABC的平分線及外角∠DCE的平分線所在的直線構(gòu)成的銳角,若∠Aα,∠Dβ

1)如圖①,當α+β180°時,∠F____(用含α,β的式子表示);

2)如圖②,當α+β180°時,請在圖②中,畫出∠F,且∠F___(用含αβ的式子表示);

3)當αβ滿足條件___時,不存在∠F

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的一塊地,AD=8 m,CD=6 m,∠ADC=90°,AB=26 m,BC=24 m.求這塊地的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次消防演習中,消防員架起一架25米長的云梯,如圖斜靠在一面墻上,梯子底端離墻7米.

1)求這個梯子的頂端距地面有多高?

2)如果消防員接到命令,要求梯子的頂端下降4米(云梯長度不變),那么云梯的底部在水平方向應(yīng)滑動多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中學初三(1)班共有40名同學,在一次30秒跳繩測試中他們的成績統(tǒng)計如下表:

跳繩數(shù)/個

81

85

90

93

95

98

100

人 數(shù)

1

2

8

11

5

將這些數(shù)據(jù)按組距5(個)分組,繪制成如圖的頻數(shù)分布直方圖(不完整).

(1)將表中空缺的數(shù)據(jù)填寫完整,并補全頻數(shù)分布直方圖;

(2)這個班同學這次跳繩成績的眾數(shù)是 個,中位數(shù)是 個;

(3)若跳滿90個可得滿分,學校初三年級共有720人,試估計該中學初三年級還有多少人跳繩不能得滿分

查看答案和解析>>

同步練習冊答案