【題目】如圖,在直角坐標(biāo)系中,⊙M經(jīng)過原點(diǎn)O(0,0),點(diǎn)A( ,0)與點(diǎn)B(0,﹣ ),點(diǎn)D在劣弧 上,連接BD交x軸于點(diǎn)C,且∠COD=∠CBO.
(1)求⊙M的半徑;
(2)求證:BD平分∠ABO;
(3)在線段BD的延長(zhǎng)線上找一點(diǎn)E,使得直線AE恰好為⊙M的切線,求此時(shí)點(diǎn)E的坐標(biāo).

【答案】
(1)解:∵點(diǎn)A( ,0)與點(diǎn)B(0,﹣ ),

∴OA= ,OB= ,

∴AB= =2 ,

∵∠AOB=90°,

∴AB是直徑,

∴⊙M的半徑為:


(2)解:∵∠COD=∠CBO,∠COD=∠CBA,

∴∠CBO=∠CBA,

即BD平分∠ABO


(3)解:如圖,過點(diǎn)A作AE⊥AB,垂足為A,交BD的延長(zhǎng)線于點(diǎn)E,過點(diǎn)E作EF⊥OA于點(diǎn)F,即AE是切線,

∵在Rt△AOB中,tan∠OAB= = = ,

∴∠OAB=30°,

∴∠ABO=90°﹣∠OAB=60°,

∴∠ABC=∠OBC= ∠ABO=30°,

∴OC=OBtan30°= × = ,

∴AC=OA﹣OC= ,

∴∠ACE=∠ABC+∠OAB=60°,

∴∠EAC=60°,

∴△ACE是等邊三角形,

∴AE=AC= ,

∴AF= AE= ,EF= AE= ,

∴OF=OA﹣AF= ,

∴點(diǎn)E的坐標(biāo)為:( ).


【解析】(1)由點(diǎn)A( ,0)與點(diǎn)B(0,﹣ ),可求得線段AB的長(zhǎng),然后由∠AOB=90°,可得AB是直徑,繼而求得⊙M的半徑;(2)由圓周角定理可得:∠COD=∠ABC,又由∠COD=∠CBO,即可得BD平分∠ABO;(3)首先過點(diǎn)A作AE⊥AB,垂足為A,交BD的延長(zhǎng)線于點(diǎn)E,過點(diǎn)E作EF⊥OA于點(diǎn)F,易得△AEC是等邊三角形,繼而求得EF與AF的長(zhǎng),則可求得點(diǎn)E的坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)課本上,同學(xué)們已經(jīng)探究過“經(jīng)過已知直線外一點(diǎn)作這條直線的垂線“的尺規(guī)作圖過程:
已知:直線l和l外一點(diǎn)P

求作:直線l的垂線,使它經(jīng)過點(diǎn)P.
作法:如圖:⑴在直線l上任取兩點(diǎn)A、B;
⑵分別以點(diǎn)A、B為圓心,AP,BP長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)Q;
⑶作直線PQ.
參考以上材料作圖的方法,解決以下問題:
(1)以上材料作圖的依據(jù)是:
(2)已知,直線l和l外一點(diǎn)P,
求作:⊙P,使它與直線l相切.(尺規(guī)作圖,不寫作法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆描黑)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市東坡實(shí)驗(yàn)中學(xué)準(zhǔn)備開展“陽(yáng)光體育活動(dòng)”,決定開設(shè)足球、籃球、乒乓球、羽毛球、排球等球類活動(dòng),為了了解學(xué)生對(duì)這五項(xiàng)活動(dòng)的喜愛情況,隨機(jī)調(diào)查了m名學(xué)生(每名學(xué)生必選且只能選擇這五項(xiàng)活動(dòng)中的一種).

根據(jù)以上統(tǒng)計(jì)圖提供的信息,請(qǐng)解答下列問題:
(1)m= , n=
(2)補(bǔ)全上圖中的條形統(tǒng)計(jì)圖.
(3)若全校共有2000名學(xué)生,請(qǐng)求出該校約有多少名學(xué)生喜愛打乒乓球.
(4)在抽查的m名學(xué)生中,有小薇、小燕、小紅、小梅等10名學(xué)生喜歡羽毛球活動(dòng),學(xué)校打算從小薇、小燕、小紅、小梅這4名女生中,選取2名參加全市中學(xué)生女子羽毛球比賽,請(qǐng)用列表法或畫樹狀圖法,求同時(shí)選中小紅、小燕的概率.(解答過程中,可將小薇、小燕、小紅、小梅分別用字母A、B、C、D代表)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明用棋子擺放圖形來研究數(shù)的規(guī)律.圖1中棋子圍成三角形,其棵數(shù)3,6,9,12,…稱為三角形數(shù).類似地,圖2中的4,8,12,16,…稱為正方形數(shù).下列數(shù)中既是三角形數(shù)又是正方形數(shù)的是( )

A.2010
B.2012
C.2014
D.2016

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,E為矩形ABCD的邊AD上一點(diǎn),動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P以1cm/秒的速度沿折線BE﹣ED﹣DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q以2cm/秒的速度沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止.設(shè)P、Q同時(shí)出發(fā)t秒時(shí),△BPQ的面積為ycm2 . 已知y與t的函數(shù)關(guān)系圖象如圖2;(其中曲線OG為拋物線的一部分,其余各部分均為線段),則下列結(jié)論:
①當(dāng)0<t≤5時(shí),y= t2;②當(dāng)t=6秒時(shí),△ABE≌△PQB;③cos∠CBE= ;④當(dāng)t= 秒時(shí),△ABE∽△QBP;
其中正確的是( )

A.①②
B.①③④
C.③④
D.①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖平行四邊形ABCD中,∠ABD=30°,AB=4,AE⊥BD,CF⊥BD,且,E,F(xiàn)恰好是BD的三等分點(diǎn),又M、N分別是AB,CD的中點(diǎn),那么四邊形MENF的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,直線y= x+6與x軸、y軸的交點(diǎn)分別為A、B兩點(diǎn),將∠OBA對(duì)折,使點(diǎn)O的對(duì)應(yīng)點(diǎn)H落在直線AB上,折痕交x軸于點(diǎn)C.

(1)直接寫出點(diǎn)C的坐標(biāo),并求過A、B、C三點(diǎn)的拋物線的解析式;
(2)若(1)中拋物線的頂點(diǎn)為D,在直線BC上是否存在點(diǎn)P,使得四邊形ODAP為平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由;
(3)若把(1)中的拋物線向左平移3.5個(gè)單位,則圖象與x軸交于F、N(點(diǎn)F在點(diǎn)N的左側(cè))兩點(diǎn),交y軸于E點(diǎn),則在此拋物線的對(duì)稱軸上是否存在一點(diǎn)Q,使點(diǎn)Q到E、N兩點(diǎn)的距離之差最大?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市計(jì)劃在“十周年”慶典當(dāng)天開展購(gòu)物抽獎(jiǎng)活動(dòng),凡當(dāng)天在該超市購(gòu)物的顧客,均有一次抽獎(jiǎng)的機(jī)會(huì),抽獎(jiǎng)規(guī)則如下:將如圖所示的圓形轉(zhuǎn)盤平均分成四個(gè)扇形,分別標(biāo)上1,2,3,4四個(gè)數(shù)字,抽獎(jiǎng)?wù)哌B續(xù)轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,當(dāng)每次轉(zhuǎn)盤停止后指針?biāo)干刃蝺?nèi)的數(shù)為每次所得的數(shù)(若指針指在分界線時(shí)重轉(zhuǎn));當(dāng)兩次所得數(shù)字之和為8時(shí),返現(xiàn)金20元;當(dāng)兩次所得數(shù)字之和為7時(shí),返現(xiàn)金15元;當(dāng)兩次所得數(shù)字之和為6時(shí)返現(xiàn)金10元.
(1)試用樹狀圖或列表的方法表示出一次抽獎(jiǎng)所有可能出現(xiàn)的結(jié)果;
(2)某顧客參加一次抽獎(jiǎng),能獲得返還現(xiàn)金的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AB=8,點(diǎn)M在⊙O上,∠MAB=20°,N是弧MB的中點(diǎn),P是直徑AB上的一動(dòng)點(diǎn).若MN=1,則△PMN周長(zhǎng)的最小值為( 。

A.4
B.5
C.6
D.7

查看答案和解析>>

同步練習(xí)冊(cè)答案