【題目】在平面直角坐標系xoy中, 一塊含60°角的三角板作如圖擺放,斜邊 AB在x軸上,直角頂點C在y軸正半軸上,已知點A(-1,0).
(1)請直接寫出點B、C的坐標:B( , )、C( , );并求經(jīng)過A、B、C三點的拋物
線解析式;
(2)現(xiàn)有與上述三角板完全一樣的三角板DEF(其中∠EDF=90°,∠DEF=60°),把頂點E放在線段
AB上(點E是不與A、B兩點重合的動點),并使ED所在直線經(jīng)過點C. 此時,EF所在直線與(1)中的拋物線交于第一象限的點M.
①設AE=x,當x為何值時,△OCE∽△OBC;
②在①的條件下探究:拋物線的對稱軸上是否存在點P使△PEM是等腰三角形,若存在,請求點P的坐標;若不存在,請說明理由.
【答案】(1)B(3,0),C(0,),(2)①x=2②存在P點坐標為(1,2)或(1,—2)或(1,2)或(1,)
【解析】
解:(1)B(3,0),C(0,)。
∵A(—1,0)B(3,0)
∴可設過A、B、C三點的拋物線為。
又∵C(0,)在拋物線上,∴,解得。
∴經(jīng)過A、B、C三點的拋物線解析式即。
(2)①當△OCE∽△OBC時,則。
∵OC=, OE=AE—AO=x-1, OB=3,∴!x=2。
∴當x=2時,△OCE∽△OBC。
②存在點P。
由①可知x=2,∴OE=1!E(1,0)。 此時,△CAE為等邊三角形。
∴∠AEC=∠A=60°。
又∵∠CEM=60°, ∴∠MEB=60°。
∴點C與點M關于拋物線的對稱軸對稱。
∵C(0,),∴M(2,)。
過M作MN⊥x軸于點N(2,0),
∴MN=。 ∴ EN=1。
∴。
若△PEM為等腰三角形,則:
ⅰ)當EP=EM時, ∵EM=2,且點P在直線x=1上,∴P(1,2)或P(1,-2)。
ⅱ)當EM=PM時,點M在EP的垂直平分線上,∴P(1,2) 。
ⅲ)當PE=PM時,點P是線段EM的垂直平分線與直線x=1的交點,∴P(1,)
∴綜上所述,存在P點坐標為(1,2)或(1,—2)或(1,2)或(1,)時,
△EPM為等腰三角形。
(1)由已知,根據(jù)銳角三角函數(shù)定義和特殊角的三角函數(shù)值可求出OC和AB的長,從而求得點B、C的坐標。設定交點式,用待定系數(shù)法,求得拋物線解析式。
(2)①根據(jù)相似三角形的性質(zhì),對應邊成比例列式求解。
②求得EM的長,分EP=EM, EM=PM和PE=PM三種情況求解即可。
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠BAC=90°,AB=AC,點D在邊BC上,把△ABD沿AD折疊后,使得點B落在點E處,連接CE,若∠DBE=15°,則∠ADC的度數(shù)為________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明做“用頻率估計概率”的試驗時,根據(jù)統(tǒng)計結(jié)果,繪制了如圖所示的折線統(tǒng)計圖,則符合這一結(jié)果的試驗最有可能的是( 。
A. 任意買一張電影票,座位號是2的倍數(shù)的概率
B. 一副去掉大小王的撲克牌,洗勻后,從中任抽一張牌的花色是紅桃
C. 拋一個質(zhì)地均勻的正方體骰子,落下后朝上的面點數(shù)是3
D. 一個不透明的袋子中有4個白球、1個黑球,它們除了顏色外都相同,從中抽到黑球
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90,E為AB的中點,求證:
(1)AC2=AB·AD;
(2)CE∥AD。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著經(jīng)濟的快速發(fā)展,環(huán)境問題越來越受到人們的關注,某校學生會為了解節(jié)能減排、垃圾分類知識
的普及情況,隨機調(diào)查了部分學生,調(diào)查結(jié)果分為“非常了解”“了解”“了解較少”“不了解”四類,
并將檢查結(jié)果繪制成下面兩個統(tǒng)計圖.
(1)本次調(diào)查的學生共有__________人,估計該校1200 名學生中“不了解”的人數(shù)是__________人.
(2)“非常了解”的4 人有兩名男生, 兩名女生,若從中隨機抽取兩人向全校做環(huán)保交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P在y軸的正半軸上,⊙P交x軸于B、C兩點,以AC為直角邊作等腰Rt△ACD,BD分別交y軸和⊙P于E、F兩點,連接AC、FC.
(1)求證:∠ACF=∠ADB;
(2)若點A到BD的距離為m,BF+CF=n,求線段CD的長;
(3)當⊙P的大小發(fā)生變化而其他條件不變時,的值是否發(fā)生變化?若不發(fā)生變化,請求出其值;若發(fā)生變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,sinA=,BC=8,點D是AB的中點,過點B作CD的垂線,垂足為點E.
(1)求線段CD的長;
(2)求cos∠ABE的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC,斜邊AB=4,O是AB的中點,以O為圓心,線段OC的長為半徑畫圓心角為90°的扇形OEF, 經(jīng)過點C,則圖中陰影部分的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若拋物線與軸兩個交點間的距離為2,稱此拋物線為定弦拋物線,已知某定弦拋物線的對稱軸為直線,將此拋物線向左平移2個單位,再向下平移3個單位,得到的拋物線過點( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com