【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90,EAB的中點,求證:

(1)AC2=AB·AD;

(2)CE∥AD。

【答案】(1)證明見解析(2)證明見解析

【解析】試題分析: (1)易證ADC∽△ACB ,

(2)EAB中點得CE= AB=AE,EAC=ECA,AC平分∠DAB,∴∠CAD=CAB,

∴∠DAC=ECA,∴∠CAD=CAB,∴∠DAC=ECA, CEAD.

試題解析:(1)∵AC平分∠DAB,

∴∠DAC=∠CAB,

又∵∠ADC=∠ACB=90°,

∴△ADC∽△ACB,

,

(2)∵EAB的中點,

CE=AB=AE,EAC=ECA,

AC平分∠DAB,

∴∠CAD=∠CAB,

∴∠DAC=∠ECA,

CEAD.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知正方形ABCD的邊長為1,點E在邊BC上,若∠AEF=90°,且EF交正方形的外角∠DCM的平分線CF于點F

1)圖1中若點E是邊BC的中點,我們可以構(gòu)造兩個三角形全等來證明AE=EF,請敘述你的一個構(gòu)造方案,并指出是哪兩個三角形全等(不要求證明);

2)如圖2,若點E在線段BC上滑動(不與點B,C重合).

①AE=EF是否一定成立?說出你的理由;

在如圖2所示的直角坐標系中拋物線y=ax2+x+c經(jīng)過A、D兩點,當點E滑動到某處時,點F恰好落在此拋物線上,求此時點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD120°CEAD,且CEBC,連接BE交對角線AC于點F,則∠EFC_____°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,一次函數(shù) )和二次函數(shù) )的圖象可能為(

A. A B. B C. C D. D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形ABCD中,E,F(xiàn)分別是ABBC邊上的中點,連接AF,DE,BD,交于G,H(如圖所示)。求AG:GH:HF的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AHBC,垂足為H,D為直線BC上一動點(不與點B、C重合),在AD的右側(cè)作△ADE,使得AE=AD,∠DAE=BAC,連接CE

1)求證:BD=CE;

2)若點D在線段BC上,問點D運動到何處時,ACDE?請說明理由;

3)當CEAB時,若△ABD中最小角為20°,試探究∠ADB的度數(shù).(直接寫出結(jié)果,無需寫出求解過程)

        

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點EBC上,點FCD上,連接AE、AF、EF,∠EAF=45°,BE=3CF=4,則正方形的邊長為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD與正方形A1B1C1D1關(guān)于某點中心對稱,已知A, D1,D三點的坐標分別是(0,4),(0,3),(0,2.

(1)對稱中心的坐標;

(2)寫出頂點B, C, B1 , C1的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AC=BC,CEABC的中線,BDAC邊上的高,BF平分∠CBDCE于點G,連接AGBD于點M,若∠AFG=63°,則∠AMB的度數(shù)為________.

查看答案和解析>>

同步練習冊答案