【題目】如圖,RtAOB 中,AOB90°,OA3,OB4,將AOB 沿 x 軸依次以三角形三個(gè)頂點(diǎn)為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn),分別得圖,圖,則旋轉(zhuǎn)到圖時(shí)直角頂點(diǎn)的坐標(biāo)是(

A.28,4B.36,0C.390D.,

【答案】B

【解析】

根據(jù)勾股定理列式求出AB的長度,然后根據(jù)圖形可發(fā)現(xiàn),每3個(gè)圖形為一個(gè)循環(huán)組依次循環(huán),且下一組的第一個(gè)圖形與上一組的最后一個(gè)圖形的直角頂點(diǎn)重合,所以,第10個(gè)圖形的直角頂點(diǎn)與第9個(gè)圖形的直角頂點(diǎn)重合,然后求解即可.

∵∠AOB90°OA3,OB4

AB5,

根據(jù)圖形,每3個(gè)圖形為一個(gè)循環(huán)組,35412,

所以,圖⑨的直角頂點(diǎn)在x軸上,橫坐標(biāo)為12×336

所以,圖⑨的頂點(diǎn)坐標(biāo)為(36,0),

又∵圖⑩的直角頂點(diǎn)與圖⑨的直角頂點(diǎn)重合,

∴圖⑩的直角頂點(diǎn)的坐標(biāo)為(36,0).

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B兩地被池塘隔開,小明通過下列方法測(cè)出了A,B間的距離:先在AB外選一點(diǎn)C,然后測(cè)出AC,BC的中點(diǎn)M,N,并測(cè)量出MN的長為12 m,由此他就知道了A,B間的距離,有關(guān)他這次探究活動(dòng)的描述錯(cuò)誤的是(  )

A. AB=24 m B. MNAB C. CMN∽△CAB D. CMMA=12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一張三角形紙片ABC,∠A=80°,點(diǎn)DAC邊上一點(diǎn),沿BD方向剪開三角形紙片后,發(fā)現(xiàn)所得兩張紙片均為等腰三角形,則C的度數(shù)可以是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一副三角板如圖甲放置,其中ACB=DEC=90°,A=45°,D=30°,AB=6cm,DC=7cm.把三角板DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)15°得到D′CE′,如圖乙,這時(shí)AB與CD′相交于點(diǎn)O,D′E′與AB、CB分別相交于點(diǎn)F、G,連接AD′.

(1)求OFE′的度數(shù);

(2)求線段AD′的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC 中,點(diǎn) E,F,G 分別在 BCAC,AB 上,AE BF 交于點(diǎn) O,且點(diǎn) O CG 上,根據(jù)尺規(guī)作圖的痕跡,判斷下列說法不正確的是(

A.AEBF ABC 的角平分線B.點(diǎn) O ABC 三邊的距離相等

C.CG 也是ABC 的一條角平分線D.AOBOCO

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的對(duì)稱軸為x=2,且經(jīng)過點(diǎn)(1,4)和(5,0),試求該拋物線的表達(dá)式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交與A(1,0),B(- 3,0)兩點(diǎn)

(1)求該拋物線的解析式;

(2)設(shè)(1)中的拋物線交y軸與C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得QAC的周長最小?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為落實(shí)美麗撫順的工作部署,市政府計(jì)劃對(duì)城區(qū)道路進(jìn)行了改造,現(xiàn)安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)的工作效率是乙隊(duì)工作效率的倍,甲隊(duì)改造360米的道路比乙隊(duì)改造同樣長的道路少用3天.

(1)甲、乙兩工程隊(duì)每天能改造道路的長度分別是多少米?

(2)若甲隊(duì)工作一天需付費(fèi)用7萬元,乙隊(duì)工作一天需付費(fèi)用5萬元,如需改造的道路全長1200米,改造總費(fèi)用不超過145萬元,至少安排甲隊(duì)工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O 的半徑為1,直線CD 經(jīng)過圓心O,交⊙O C、D 兩點(diǎn),直徑AB⊥CD,點(diǎn) M 是直線CD 上異于點(diǎn)C、O、D 的一個(gè)動(dòng)點(diǎn),AM 所在的直線交⊙O 于點(diǎn)N,點(diǎn) P 是直線CD 上另一點(diǎn),PMPN

(1)當(dāng)點(diǎn) M 在⊙O 內(nèi)部,如圖①,試判斷 PN 與⊙O 的關(guān)系,并寫出證明過程;

(2)當(dāng)點(diǎn) M 在⊙O 外部,如圖②,其他條件不變時(shí),(1)的結(jié)論是否還成立? 請(qǐng)說明理由;

(3)當(dāng)點(diǎn) M 在⊙O 外部,如圖③,∠AMO15°,求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案