【題目】如圖,在直角坐標系中,點A在x軸上,且A(4,0),點B在y軸上,且B(0,4).
(1)求線段AB的長;
(2)若點E在線段AB上,OE⊥OF,且OE=OF,求AE+AF的值;
(3)在(2)的條件下,過O作OM⊥EF,交AB于M,試確定線段BE、EM、AM之間的數(shù)量關系?并證明你的結論.
【答案】(1)AB=4;
(2)AE+AF=4;
(3)結論:FM2=AM2+AF2,理由見解析.
【解析】
(1)根據(jù)AB=即可解決;
(2)先證明△BOE≌△AOF得AF=BE,所以AE+AF=AE+BE=AB即可解決;
(3)結論:FM2=AM2+AF2.只要證明ME=MF,AF=BE,在RT△AMF中利用勾股定理即可證明.
(1)在Rt△ABO中,∵AO=OB=4,
∴AB===4;
(2)∵∠BOA=∠EOF=90°,
∴∠BOE=∠AOF,
在△BOE和△AOF中,
,
∴△BOE≌△AOF,
∴AF=BE,
∴AE+AF=AE+EB=AB=4;
(3)結論:FM2=AM2+AF2,理由如下:
連接FM,
∵OE=OF,OM⊥EF,
∴OM垂直平分分EF,
∴ME=MF,
∵OA=OB,∠AOB=90°,
∴∠OBA=∠OAB=45°,
由(1)可知△BOE≌△AOF,
∴BE=AF,∠OBE=∠OAF=45°,
∴∠MAF=∠OAF+∠OAB=90°,
∴FM2=AM2+AF2,
∴EM2=BE2+AM2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,梯形ABCD中, AD// BC, ∠B=90°, AD=2, BC=5,E是AB上一點,將△BCE沿著直線CE翻折,點B恰好與點D重合,則BE=__
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形網(wǎng)格中,建立如圖所示的平面直角坐標系xOy,△ABC的三個頂點都在格點上,點A的坐標(4,4),請解答下列問題:
(1)畫出△ABC關于y軸對稱的△A1B1C1,并寫出點A1、B1、C1的坐標;
(2)將△ABC繞點C逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A2B2C2,并求出點A到A2的路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校計劃購進A,B兩種樹木共100棵進行校園綠化,經(jīng)市場調(diào)查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.
(1)求A,B兩種樹木每棵各多少元?
(2)因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.實際付款總金額按市場價九折優(yōu)惠,請設計一種購買樹木的方案,使實際所花費用最省,并求出最省的費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖的2016年6月份的日歷表中,任意框出表中豎列上三個相鄰的數(shù),這三個數(shù)的和不可能是( )
A. 27 B. 51 C. 69 D. 72
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形網(wǎng)格中(網(wǎng)格中的每個小正方形邊長是1),△ABC的頂點均在格點上,請在所給的直角坐標系中解答下列問題:
(1)作出△ABC繞點A逆時針旋轉(zhuǎn)90°的△A1B1C1;作出△ABC關于原點O成中心對稱的△A2B2C2;
(2)點B1的坐標為__________,點C2的坐標為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了鼓勵市民節(jié)約用水,某市居民生活用水按階梯式水價計費.下表是該市民一戶一表"生活用水階梯式計費價格表的部分信息:
自來水銷售價格 | 污水處理價格 | |
每戶每月用水量 | 單價:元/噸 | 單價:元/噸 |
噸及以下 | ||
超過噸但不超過噸的部分 | ||
超過噸的部分 |
(說明:每戶生產(chǎn)的污水量等于該戶自來水用量;②水費=自來水費用+污水處理費)
已知小王家2018年7月用水噸,交水費元.8月份用水噸,交水費元.
(1)求的值;
(2)如果小王家9月份上交水費元,則小王家這個月用水多少噸?
(3)小王家10月份忘記了去交水費,當他11月去交水費時發(fā)現(xiàn)兩個月一共用水50噸,其中10月份用水超過噸,一共交水費元,其中包含元滯納金,求小王家11月份用水多少噸? (滯納金:因未能按期繳納水費,逾期要繳納的“罰款金額”)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)有五張形狀、大小、質(zhì)地都相同的卡片,這些卡片上面分別畫有下列圖形:①正方形;②等邊三角形;③平行四邊形;④等腰三角形;⑤圓.將卡片背面朝上洗勻,從中隨機抽取一張,抽出的紙片正面圖形是軸對稱圖形,但不是中心對稱圖形的概率是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com