【題目】如圖,在ABCD中,經(jīng)過A,C兩點分別作AEBD,CFBD,E,F為垂足.

1)求證:AED≌△CFB

2)求證:四邊形AFCE是平行四邊形

【答案】1)見解析;2)見解析.

【解析】

1)根據(jù)平行四邊形的性質(zhì)可得ADBC,∠CBF=∠ADE,再根據(jù)垂線的性質(zhì)可得∠CFB=∠AED90°,再根據(jù)全等三角形的判定(角角邊)來證明即可;

2)根據(jù)全等三角形的性質(zhì)可得AECF,再由AEBDCFBD可得AECF,根據(jù)一組對邊平行且相等的四邊形為平行四邊形即可證明.

1)證明:∵四邊形ABCD是平行四邊形,

ADBC,ADBC,

∴∠CBF=∠ADE,

AEBDCFBD,

∴∠CFB=∠AED90°,

∴△AED≌△CFBAAS).

2)證明:∵△AED≌△CFB

AECF,

AEBDCFBD,

AECF

∴四邊形AFCE是平行四邊形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角板如圖擺放,∠OAB=OCD=90°,∠AOB=60°,∠COD=45°OM平分∠AOD,ON平分∠COB,則∠MON的度數(shù)為(

A.60°B.45°C.65.5°D.52.5°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角梯形ABCD中, , ,

1)如圖1,連接AC,求證:CA的平分線;

2)線段BC上一點E,將 沿AE翻折,點B落到點F處,射線EF與線段CD交于點M

①如圖2,當點M與點D重合時,求證:

②如圖3,當點M不與點D重合時,求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算或化簡:

121+

22x2y(﹣3xy÷xy2

3)(﹣2a3a2a+3

4)(x+3)(x+4)﹣(x12

5[2a3x2a2x)﹣a2x2(﹣ax2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,C(0,5),D(a,5)a 0),A、B x 軸上,∠1=D,求證:∠ACB+BED=180°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A1,a),將線段OA平移至線段BC,Bb,0),am+6n的算術(shù)平方根,3,n,且mn,正數(shù)b滿足(b+1216

1)直接寫出AB兩點坐標為:A   ,B   

2)如圖1,連接AB、OC,求四邊形AOCB的面積;

3)如圖2,若∠AOBa,點Py軸正半軸上一動點,試探究∠CPO與∠BCP之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】推理填空:如圖,E點為DF上的點,BAC上的點, ,那么,請完成它成立的理由

解: ______

______

______ ______ ______

______

______

______

______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了測出某塔CD的高度,在塔前的平地上選擇一點A,用測角儀測得塔頂D的仰角為30°,在A、C之間選擇一點B(A、B、C三點在同一直線上).用測角儀測得塔頂D的仰角為75°,且AB間的距離為40m.

(1)求點B到AD的距離;
(2)求塔高CD(結(jié)果用根號表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(類比學習)

小明同學類比除法2401615的豎式計算,想到對二次三項式x23x2進行因式分解的方法:

x23x2x1x2,所以x23x2x1x2

(初步應用)

小明看到了這樣一道被墨水污染的因式分解題:x2x6x2x,(其中□、☆代表兩個被污染的系數(shù)),他列出了下列豎式:

得出□=___________☆=_________

(深入研究)

小明用這種方法對多項式x22x2-x-2進行因式分解,進行到了:x32x2-x-2x2*.(*代表一個多項式),請你利用前面的方法,列出豎式,將多項式x32x2-x-2因式分解.

查看答案和解析>>

同步練習冊答案