【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),且與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論: ①a﹣b+c>0;
②3a+b=0;
③b2=4a(c﹣n);
④一元二次方程ax2+bx+c=n﹣1有兩個(gè)不相等的實(shí)數(shù)根.
其中正確結(jié)論的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
【答案】C
【解析】解:∵拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間,而拋物線的對(duì)稱軸為直線x=1, ∴拋物線與x軸的另一個(gè)交點(diǎn)在點(diǎn)(﹣2,0)和(﹣1,0)之間.
∴當(dāng)x=﹣1時(shí),y>0,
即a﹣b+c>0,所以①正確;
∵拋物線的對(duì)稱軸為直線x=﹣ =1,即b=﹣2a,
∴3a+b=3a﹣2a=a,所以②錯(cuò)誤;
∵拋物線的頂點(diǎn)坐標(biāo)為(1,n),
∴ =n,
∴b2=4ac﹣4an=4a(c﹣n),所以③正確;
∵拋物線與直線y=n有一個(gè)公共點(diǎn),
∴拋物線與直線y=n﹣1有2個(gè)公共點(diǎn),
∴一元二次方程ax2+bx+c=n﹣1有兩個(gè)不相等的實(shí)數(shù)根,所以④正確.
故選C.
【考點(diǎn)精析】掌握二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系是解答本題的根本,需要知道二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開(kāi)口方向:a>0時(shí),拋物線開(kāi)口向上; a<0時(shí),拋物線開(kāi)口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B在x軸上,∠ABO=90°,∠A=30°,OA=4,將△OAB繞點(diǎn)O旋轉(zhuǎn)150°得到△OA′B′,則點(diǎn)A′的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】三角形兩邊的長(zhǎng)分別是8和6,第3邊的長(zhǎng)是一元二次方程x2﹣16x+60=0的一個(gè)實(shí)數(shù)根,則該三角形的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線AC=12,面積為24,△ABE是等邊三角形,若點(diǎn)P在對(duì)角線AC上移動(dòng),則PD+PE的最小值為( 。
A. 4 B. 4 C. D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,∠B=60°,AB=1,延長(zhǎng)AD到點(diǎn)E,使DE=AD,延長(zhǎng)CD到點(diǎn)F,使DF=CD,連接AC、CE、EF、AF.
(1)求證:四邊形ACEF是矩形;
(2)求四邊形ACEF的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(9分)已知如圖(1):△ABC中,AB=AC,∠B、∠C的平分線相交于點(diǎn)O,過(guò)點(diǎn)O作EF∥BC分別交AB、AC于E、F.
(1)寫出線段EF與BE、CF間的數(shù)量關(guān)系?(不證明)
(2)若AB≠AC,其他條件不變,如圖(2),圖中線段EF與BE、CF間是否存在(1)中數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.
(3)若△ABC中,AB≠AC,∠B的平分線與三角形外角∠ACD的平分線CO交于O,過(guò)O點(diǎn)作OE∥BC交AB于E,交AC于F,如圖(3),這時(shí)圖中線段EF與BE,CF間存在什么數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的兩條中線AD、CE交于點(diǎn)G,且AD⊥CE.連接BG并延長(zhǎng)與AC交于點(diǎn)F,若AD=9,CE=12,則GF為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=10,AC=2 ,BC邊上的高AD=6,則另一邊BC等于( )
A.10
B.8
C.6或10
D.8或10
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com