【題目】如圖,△ABC的兩條中線AD、CE交于點(diǎn)G,且AD⊥CE.連接BG并延長(zhǎng)與AC交于點(diǎn)F,若AD=9,CE=12,則GF為 .
【答案】5
【解析】解:∵點(diǎn)G是△ABC的兩條中線AD、CE的交點(diǎn),
∴點(diǎn)G是△ABC的重心,
∴AG= AD=6,CG= CE=8,
∵AD⊥CE,
∴AC= =10,
∵點(diǎn)G是△ABC的重心,
∴點(diǎn)F是AC的中點(diǎn),
∴GF= AC=5,
所以答案是:5.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解三角形的“三線”的相關(guān)知識(shí),掌握1、三角形角平分線的三條角平分線交于一點(diǎn)(交點(diǎn)在三角形內(nèi)部,是三角形內(nèi)切圓的圓心,稱為內(nèi)心);2、三角形中線的三條中線線交于一點(diǎn)(交點(diǎn)在三角形內(nèi)部,是三角形的幾何中心,稱為中心);3、三角形的高線是頂點(diǎn)到對(duì)邊的距離;注意:三角形的中線和角平分線都在三角形內(nèi).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,點(diǎn)D , E , F分別是邊AB , AC , BC上的點(diǎn),DE∥BC , EF∥AB , 且AD:DB=4:7,那么CF:CB等于( )
A.7:11
B.4:8
C.4:7
D.3:7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),且與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論: ①a﹣b+c>0;
②3a+b=0;
③b2=4a(c﹣n);
④一元二次方程ax2+bx+c=n﹣1有兩個(gè)不相等的實(shí)數(shù)根.
其中正確結(jié)論的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某建筑工程隊(duì)利用一面墻(墻的長(zhǎng)度不限),用40米長(zhǎng)的籬笆圍成一個(gè)長(zhǎng)方形的倉(cāng)庫(kù).
(1)求長(zhǎng)方形的面積是150平方米,求出長(zhǎng)方形兩鄰邊的長(zhǎng);
(2)能否圍成面積220平方米的長(zhǎng)方形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知AC∥BD,EA,EB分別平分∠CAB和∠DBA,CD過(guò)E點(diǎn).求證:AB=AC+BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某書(shū)店老板去批發(fā)市場(chǎng)購(gòu)買某種圖書(shū).第一次用1200元購(gòu)書(shū)若干本,并按該書(shū)定價(jià)20元出售,很快售完.由于該書(shū)暢銷,第二次購(gòu)書(shū)時(shí),每本書(shū)批發(fā)價(jià)比第一次提高了25%,他用1800元所購(gòu)該書(shū)數(shù)量比第一次多20本,又按定價(jià)售出全部圖書(shū).
(1)求該書(shū)原來(lái)每本的批發(fā)價(jià);
(2)該老板這兩次售書(shū)一共賺了多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:正方形ABCD的邊長(zhǎng)為2,點(diǎn)M在射線BC上,且∠BAM=θ,射線AM交BD于點(diǎn)N,作CE⊥AM于點(diǎn)E.
(1)如圖1,當(dāng)點(diǎn)M在邊BC上時(shí),則θ的取值范圍是(點(diǎn)M與端點(diǎn)B不重合) ;∠NCE與∠BAM的數(shù)量關(guān)系是 ;
(2)若點(diǎn)M在BC的延長(zhǎng)線時(shí);
①依題意,補(bǔ)全圖2;
②(1)中的∠NCE與∠BAM的數(shù)量關(guān)系是否發(fā)生變化?若變化,寫(xiě)出數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+2過(guò)B(﹣2,6),C(2,2)兩點(diǎn).
(1)試求拋物線的解析式;
(2)記拋物線頂點(diǎn)為D,求△BCD的面積;
(3)若直線y=﹣ x向上平移b個(gè)單位所得的直線與拋物線段BDC(包括端點(diǎn)B、C)部分有兩個(gè)交點(diǎn),求b的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com