【題目】如圖,傅家堰中學新修了一個運動場,運動場的兩端為半圓形,中間區(qū)域為足球場,外面鋪設有塑膠環(huán)形跑道,四條跑道的寬均為1米.

1)用含a、b的代數(shù)式表示塑膠環(huán)形跑道的總面積;

2)若a=60米,b=20米,每鋪1平方米塑膠需120元,求四條跑道鋪設塑膠共花費多少元?(π=3

【答案】1b+16π+8a;(2)四條跑道鋪設塑膠共花費92160元.

【解析】

1)塑膠環(huán)形跑道的總面積可以看成是半徑為()的圓的面積-半徑為的圓的面積+8個長為a寬為1的矩形面積,據(jù)此解答即可;

2)先把a、bπ的值代入(1)題的式子,可得需鋪設的總面積,所得結果再乘以120即得結果.

解:(1)塑膠環(huán)形跑道的總面積2π2+2×4a

+16)-+8a

=+4πb+16π+8a

=4πb+16π+8a;

2)當a=60b=20,π=3時,原式=4×3×20+16×3+8×60=768,768×120=92160()

答:四條跑道鋪設塑膠共花費92160元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)ykx+b的圖象過A(1,1)B(2,﹣1)

1)求一次函數(shù)ykx+b的表達式;

2)求直線ykx+b與坐標軸圍成的三角形的面積;

3)將一次函數(shù)ykx+b的圖象沿y軸向下平移3個單位,則平移后的函數(shù)表達式為   ,再向右平移1個單位,則平移后的函數(shù)表達式為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在RtABC中,∠A=90°,AB=AC,點D,E分別在邊AB,AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.

(1)觀察猜想

1中,線段PMPN的數(shù)量關系是 ,位置關系是

(2)探究證明

ADE繞點A逆時針方向旋轉到圖2的位置,連接MN,BD,CE,判斷PMN的形狀,并說明理由;

(3)拓展延伸

ADE繞點A在平面內自由旋轉,若AD=4,AB=10,請直接寫出PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C是直線ABDE之間的一點,∠ACD=90°,下列條件能使得ABDE的是(。

A. α+∠β=180° B. β﹣∠α=90° C. β=3∠α D. α+∠β=90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),,垂足分別為、.點在線段上以的速度由點向點運動,同時點在射線上運動.它們運動的時間為(當點運動結束時,點運動隨之結束).

1)若點的運動速度與點的運動速度相等,當時,是否全等,并判斷此時線段和線段的位置關系,請分別說明理由;

2)如圖(2),若“,”改為“”,點的運動速度為,其它條件不變,當點、運動到何處時有全等,求出相應的的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,點A(0,3)與點B關于x軸對稱,點C(n,0)x軸的正半軸上一動點.以AC為邊作等腰直角三角形ACD,∠ACD=90°,點D在第一象限內.連接BD,交x軸于點F

(1)如果∠OAC=38°,求∠DCF的度數(shù);

(2)用含n的式子表示點D的坐標;

(3)在點C運動的過程中,判斷OF的長是否發(fā)生變化?若不變求出其值,若變化請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于二次函數(shù)y=ax2+bx+c的圖象有下列命題,其中是假命題的個數(shù)是( )

①當c=0時,函數(shù)的圖象經(jīng)過原點;

②當b=0時,函數(shù)的圖象關于y軸對稱;

③函數(shù)的圖象最高點的縱坐標是;

④當c>0且函數(shù)的圖象開口向下時,方程ax2+bx+c=0必有兩個不相等的實根.

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,DBC邊上的一點,ABDB,BE平分∠ABC,交AC邊于點E,連接DE

1)求證:AEDE;

2)若∠A100°,∠C50°,求∠AEB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,點在線段上運動(不與重合),連接,作,交線段.

1)當時,= ,= ;點運動時,逐漸 (填增大減小);

2)當等于多少時,,請說明理由;

3)在點的運動過程中,的形狀可以是等腰三角形嗎?若可以,請直接寫出的度數(shù).若不可以,請說明理由.

查看答案和解析>>

同步練習冊答案