【題目】平面直角坐標(biāo)系中,拋物線y=ax2+bx+2過(guò)點(diǎn)A(﹣3,0)、B (1,0),與y軸交于點(diǎn)C,拋物線的頂點(diǎn)為D,點(diǎn)G在拋物線上且其縱坐標(biāo)為2.
(1)a= , b= , D( , ).
(2)P是線段AB上一動(dòng)點(diǎn)(點(diǎn)P不與A、B重合),點(diǎn)P作x軸的垂線交拋物線于點(diǎn)E.
①若PE=PB,試求E點(diǎn)坐標(biāo);
②在①的條件下,PE、DG交于點(diǎn)M,在線段PE上是否存一點(diǎn)N,使得△DMN與△DCO相似?若存在,試求出相應(yīng)點(diǎn)的坐標(biāo);
③在①的條件下,點(diǎn)F是坐標(biāo)軸上一點(diǎn),且點(diǎn)F到EC、ED的距離相等,試直接寫(xiě)出EF的長(zhǎng)度.

【答案】
(1)﹣ ;﹣ ;﹣1;
(2)

①設(shè)P(x,0),則E(x,﹣ x2 x+2),則PB=1﹣x,PE=﹣ x2 x+2.

∵PE=PB,

∴﹣ x2 x+2=1﹣x.

∴x1=1(舍去),x2=﹣

當(dāng)x=﹣ ,函數(shù)值y=

∴E(﹣ ).

②存在點(diǎn)N(﹣ , ),理由如下:過(guò)點(diǎn)G作GH⊥x軸,垂足為H,連結(jié)DH.

把y=2代入拋物線的解析式得:2=﹣ x2 x+2,解得x=0或x=﹣2.

∴G(﹣2,2).

拋物線的對(duì)稱(chēng)軸為x=﹣1,

∵GH⊥x軸,

∴H(﹣2,0).

∴△DOC與△DHG關(guān)于直線x=﹣1對(duì)稱(chēng).

∴要使DMN與△DCO相似,只需△DMN與△DGH相似.

∵M(jìn)N∥GH,

∴△DMN∽△DGH.

設(shè)直線DH的解析式為y=kx+b,將點(diǎn)H和點(diǎn)D的坐標(biāo)代入得: ,

解得:k= ,b=

∴直線DH的解析式為y= x+

將x=﹣ 代入得:y=

∴N(﹣ , ).

③如圖2所示:過(guò)點(diǎn)E作EF⊥y軸,交拋物線的對(duì)稱(chēng)軸與點(diǎn)G,則G(﹣1, )過(guò)點(diǎn)E作EF′⊥x垂足為F′.

設(shè)直線EC的解析式為y=mx+n將點(diǎn)E和點(diǎn)C的坐標(biāo)代入得: ,

解得:m=﹣ ,n=2.

∴直線EC的解析式為y= x+2.

當(dāng)x=﹣1時(shí),y=

∴DG=GM.

∴點(diǎn)M與點(diǎn)D關(guān)于EF對(duì)稱(chēng).

∴EF是∠DEC的角平分線.

∴點(diǎn)F到點(diǎn)F到EC、ED的距離相等.

∴EF=

∵EF′⊥x垂足為F′.

∴∠FEF′=90°,

∴∠DEF+∠HEF′=90°,∠FEC+∠CEF′=90°.

又∵∠DEF=∠FEC,

∴∠HEF′=∠CEF′.

∴EF′是∠HEC的平分線,

∴點(diǎn)F′到DE和EC的距離相等.

∴EF′=

綜上所述,EF的長(zhǎng)為


【解析】解:(1)把x=0代入拋物線的解析式得:y=2,
∴C(0,2).
設(shè)拋物線的解析式為y=a(x+3)(x﹣1),將點(diǎn)C的坐標(biāo)代入得﹣3a=2,解得:a=﹣
∴拋物線的解析式為y=﹣ (x+3)(x﹣1)=﹣ x2 x+2.
∴b=﹣
∴x=﹣ =﹣1.
當(dāng)x=﹣1時(shí),y=
∴D(﹣1, ).
所以答案是:﹣ ;﹣ ;﹣1,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的袋子中裝有僅顏色不同的5個(gè)小球,其中紅球3個(gè),黑球2個(gè).
(1)先從袋中取出m(m>1)個(gè)紅球,再?gòu)拇又须S機(jī)摸出1個(gè)球,將“摸出黑球”記為事件A,填空:若A為必然事件,則m的值為 , 若A為隨機(jī)事件,則m的取值為;
(2)若從袋中隨機(jī)摸出2個(gè)球,正好紅球、黑球各1個(gè),求這個(gè)事件的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,點(diǎn)DAC的垂直平分線上.

(1)若AB=AD,∠BAD=26°,求∠B∠C的度數(shù);

(2)若AB=AD=DC,AC=BC,求∠C的度數(shù);

(3)若AC=6,△ABD的周長(zhǎng)為13cm,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將正整數(shù)按如圖所示的規(guī)律在平面直角坐標(biāo)系中進(jìn)行排列,每個(gè)正整數(shù)對(duì)應(yīng)一個(gè)整點(diǎn)坐標(biāo)(x,y),且x,y均為整數(shù),如數(shù)5對(duì)應(yīng)的坐標(biāo)為(-1,1),試探求2015對(duì)應(yīng)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,一塊廣告牌AB頂端固定在一堵墻AD的A點(diǎn)處,與地面夾角∠ABD=45°,由于施工底部斷裂掉一段以后,底部落在距離B點(diǎn)8米處的C點(diǎn),此時(shí)與地面夾角∠ACD=75°.求斷裂前、后的廣告牌AB、AC的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)C與某建筑物底端B相距306米(點(diǎn)C與點(diǎn)B在同一水平面上),某同學(xué)從點(diǎn)C出發(fā),沿同一剖面的斜坡CD行走195米至坡頂D處,斜坡CD的坡度(或坡比)i=1:2.4,在D處測(cè)得該建筑物頂端A的俯視角為20°,則建筑物AB的高度約為(精確到0.1米,參考數(shù)據(jù):sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( )

A.29.1米
B.31.9米
C.45.9米
D.95.9米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面直角坐標(biāo)系中有一點(diǎn).

(1)點(diǎn)My軸的距離為1時(shí),M的坐標(biāo)?

(2)點(diǎn)MN//x軸時(shí),M的坐標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖,平移三角形ABC,使點(diǎn)A平移到點(diǎn),畫(huà)出平移后的三角形;

(2)(1)的條件下,指出點(diǎn)A,B,C 的對(duì)應(yīng)點(diǎn),并指出AB,BC,AC的對(duì)應(yīng)線段和∠A,∠B, C的對(duì)應(yīng)角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為節(jié)約水資源,制定了新的居民用水收費(fèi)標(biāo)準(zhǔn),按照新標(biāo)準(zhǔn),用戶每月繳納的水費(fèi)y(元)與每月用水量x(m3)之間的關(guān)系如圖所示.
(1)求y關(guān)于x的函數(shù)解析式;
(2)若某用戶二、三月份共用水40cm3(二月份用水量不超過(guò)25cm3),繳納水費(fèi)79.8元,則該用戶二、三月份的用水量各是多少m3

查看答案和解析>>

同步練習(xí)冊(cè)答案