【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn).ABC的邊BCx軸上,A、C兩點(diǎn)的坐標(biāo)分別為A0m)、Cn0),B(﹣5,0),且,點(diǎn)PB出發(fā),以每秒2個(gè)單位的速度沿射線BO勻速運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒.

1)求A、C兩點(diǎn)的坐標(biāo);

2)連接PA,用含t的代數(shù)式表示POA的面積;

3)當(dāng)P在線段BO上運(yùn)動(dòng)時(shí),是否存在一點(diǎn)P,使PAC是等腰三角形?若存在,請(qǐng)寫出滿足條件的所有P點(diǎn)的坐標(biāo)并求t的值;若不存在,請(qǐng)說明理由。

【答案】1)A的坐標(biāo)是,的坐標(biāo)是;(2)當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;(3)存在一點(diǎn)、,相對(duì)應(yīng)的時(shí)間分別是、1.5使是等腰三角形.

【解析】

1)根據(jù)偶次方和算術(shù)平方根的非負(fù)性得出,,求出即可;

2)分為三種情況:當(dāng)時(shí),在線段上,②當(dāng)時(shí),重合,③當(dāng)時(shí),在射線上,求出,根據(jù)三角形的面積公式求出即可;

3)分為三種情況:①為頂角時(shí),找出腰長(zhǎng)關(guān)系便可解;②為頂角時(shí),找出腰長(zhǎng)關(guān)系便可解;③為頂角時(shí),根據(jù)勾股定理可求得.

解:(1,

,,

,

的坐標(biāo)是,的坐標(biāo)是;

2,

①當(dāng)時(shí),在線段上,如圖1

,

的面積;

②當(dāng)時(shí),重合,此時(shí)不存在,即;

③當(dāng)時(shí),在射線上,如備用圖2,

,

的面積;

3在線段上運(yùn)動(dòng)使是等腰三角形,分三種情況,

為頂角時(shí),即,

中垂線,

點(diǎn)坐標(biāo)為,.

;

為頂角時(shí),

根據(jù)勾股定理可得,,

POB上,

點(diǎn)坐標(biāo)為,

;

為頂角時(shí),,設(shè),

根據(jù)勾股定理,在中,

解得,

,

點(diǎn)坐標(biāo)為,,

;

綜上,存在一點(diǎn)、、相對(duì)應(yīng)的時(shí)間分別是、1.5、使是等腰三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,BC20 cm,P,Q,MN分別從A,BCD出發(fā),沿ADBC,CB,DA方向在矩形的邊上同時(shí)運(yùn)動(dòng),當(dāng)有一個(gè)點(diǎn)先到達(dá)所在運(yùn)動(dòng)邊的另一個(gè)端點(diǎn)時(shí),運(yùn)動(dòng)即停止.已知在相同時(shí)間內(nèi),若BQx cm(x≠0),則AP2x cm,CM3x cmDNx2 cm,

(1)當(dāng)x為何值時(shí),點(diǎn)P,N重合;

(2)當(dāng)x為何值是,以P,QM,N為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了積極響應(yīng)國(guó)家新農(nóng)村建設(shè),遂寧市某鎮(zhèn)政府采用了移動(dòng)宣講的形式進(jìn)行宣傳動(dòng)員.如圖,筆直公路MN的一側(cè)點(diǎn)A處有一村莊,村莊A到公路MN的距離為600米,假使宣講車P周圍1000米以內(nèi)能聽到廣播宣傳,宣講車P在公路MN上沿PN方向行駛時(shí):

1)請(qǐng)問村莊能否聽到宣傳,請(qǐng)說明理由;

2)如果能聽到,已知宣講車的速度是200/分鐘,那么村莊總共能聽到多長(zhǎng)時(shí)間的宣傳?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點(diǎn)P是等邊ABC內(nèi)一點(diǎn),連接PC,以PC為邊作等邊三角形PDC,連接PA,PB,BD

1)求證:∠APC=∠BDC;

2)當(dāng)∠APC150°時(shí),試猜想DPB的形狀,并說明理由;

3)當(dāng)∠APB100°DBPB,求∠APC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商人制成了一個(gè)如圖所示的轉(zhuǎn)盤,取名為開心大轉(zhuǎn)盤,游戲規(guī)定:參與者自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針指向字母A,則收費(fèi)2元,若指針指向字母B,則獎(jiǎng)勵(lì)3元;若指針指向字母C,則獎(jiǎng)勵(lì)1元.一天,前來尋開心的人轉(zhuǎn)動(dòng)轉(zhuǎn)盤80次,你認(rèn)為該商人是盈利的可能性大還是虧損的可能性大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價(jià)比乙種羽毛球多15元,王老師從該網(wǎng)店購(gòu)買了2筒甲種羽毛球和3筒乙種羽毛球,共花費(fèi)255元.

(1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價(jià)各是多少元?

(2)根據(jù)消費(fèi)者需求,該網(wǎng)店決定用不超過8780元購(gòu)進(jìn)甲、乙兩種羽毛球共200筒,且甲種羽毛球的數(shù)量大于乙種羽毛球數(shù)量的,已知甲種羽毛球每筒的進(jìn)價(jià)為50元,乙種羽毛球每筒的進(jìn)價(jià)為40元.

①若設(shè)購(gòu)進(jìn)甲種羽毛球m筒,則該網(wǎng)店有哪幾種進(jìn)貨方案?

②若所購(gòu)進(jìn)羽毛球均可全部售出,請(qǐng)求出網(wǎng)店所獲利潤(rùn)W(元)與甲種羽毛球進(jìn)貨量m(筒)之間的函數(shù)關(guān)系式,并說明當(dāng)m為何值時(shí)所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ACB90°ACBC,將ABC沿EF折疊,使點(diǎn)A落在直角邊BC上的D點(diǎn)處,設(shè)EFAB、AC邊分別交于點(diǎn)E、點(diǎn)F,如果折疊后CDFBDE均為等腰三角形,那么∠B_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若∠C=αEAC+FBC=β

1)如圖①,AM是∠EAC的平分線,BN是∠FBC的平分線,若AMBN,則αβ有何關(guān)系?并說明理由.

2)如圖②,若∠EAC的平分線所在直線與∠FBC平分線所在直線交于P,試探究∠APBα、β的關(guān)系是______.(用αβ表示)

3)如圖③,若α≥βEAC與∠FBC的平分線相交于P1,EAP1與∠FBP1的平分線交于P2 ;依此類推,則∠P5=______.(用α、β表示)

  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=kx(k≠0)經(jīng)過點(diǎn)(12,﹣5),將直線向上平移m(m>0)個(gè)單位,若平移后得到的直線與半徑為6⊙O相交(點(diǎn)O為坐標(biāo)原點(diǎn)),則m的取值范圍為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案