【題目】如圖,已知在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D在邊BC上,以AD為邊作正方形ADEF,連結(jié)CF,CE.
(1)求證:△ABD≌△ACF;
(2)如果BD=AC,求證:CD=CE.
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析
【解析】試題分析:(1)根據(jù)正方形的性質(zhì)得出 求出證出≌
(2)根據(jù)△ABD≌△ACF,,推出,求出 根據(jù)SAS推出△DAC≌△EFC即可.
試題解析:證明:(1)∵四邊形ADEF是正方形,
∴AD=AF,∠FAD=90°=∠BAC,
∴∠FAD-∠DAC=∠BAC-∠DAC,
∴∠FAC=∠BAD,
在△ABD和△ACF中
∴△ABD≌△ACF(SAS),
(2)∵△ABD≌△ACF,
∴BD=CF,
∵BD=AC,
∴AC=CF,
∴∠CAF=∠CFA,
∵四邊形ADEF是正方形,
∴AD=EF,∠DAF=∠EFA=90°,
∴∠DAF-∠CAF=∠EFA-∠CFA,
∴∠DAC=∠EFC,
在△DAC和△EFC中
∴△DAC≌△EFC(SAS),
∴CD=CE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A是雙曲線(xiàn)y= (x>0)上一點(diǎn),過(guò)點(diǎn)A作AB∥y軸,交雙曲線(xiàn)y=﹣ (x>0)于點(diǎn)B,過(guò)點(diǎn)B作BC⊥AB交y軸于點(diǎn)C,連接AC,則△ABC的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=40°時(shí),求∠DEF的度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E是ABCD的邊CD的中點(diǎn),延長(zhǎng)AE交BC的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)求證:△ADE≌△FCE.
(2)若∠BAF=90°,BC=10,EF=6,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=k1x﹣1的圖象經(jīng)過(guò)A(0,﹣1)、B(1,0)兩點(diǎn),與反比例函數(shù)y= 的圖象在第一象限內(nèi)的交點(diǎn)為M,若△OBM的面積為1.
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)在x軸上是否存在點(diǎn)P,使AM⊥PM?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;
(3)x軸上是否存在點(diǎn)Q,使△QBM∽△OAM?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①、②、③、④四個(gè)圖形都是平面圖形,觀察圖②和表中對(duì)應(yīng)數(shù)值,探究計(jì)數(shù)的方法并解答下面的問(wèn)題.
(1)數(shù)一數(shù)每個(gè)圖各有多少頂點(diǎn)、多少條邊、這些邊圍成多少區(qū)域,將結(jié)果填入下表:
圖形 | ① | ② | ③ | ④ |
頂點(diǎn)數(shù)(V) | ||||
邊數(shù)(E) | ||||
區(qū)域數(shù)(F) |
(2)根據(jù)表中的數(shù)值,寫(xiě)出平面圖的頂點(diǎn)數(shù)、邊數(shù)、區(qū)域數(shù)之間的關(guān)系;
(3)如果一個(gè)平面圖形有20個(gè)頂點(diǎn)和11個(gè)區(qū)域,求這個(gè)平面圖形的邊數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是直線(xiàn)AB上任一點(diǎn),射線(xiàn)OD和射線(xiàn)OE分別平分∠AOC和∠BOC.
(1)填空:與∠AOE互補(bǔ)的角是 ;
(2)若∠AOD=36°,求∠DOE的度數(shù);
(3)當(dāng)∠AOD=x°時(shí),請(qǐng)直接寫(xiě)出∠DOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖某商場(chǎng)為了吸引顧客,設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán),并規(guī)定:每購(gòu)買(mǎi)500元商品,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)的機(jī)會(huì),如果轉(zhuǎn)盤(pán)停止后,指針上對(duì)準(zhǔn)500、20、100、50、10的區(qū)域,顧客就可以分別獲得500元、200元、100元、50元、10元的購(gòu)物券一張。(轉(zhuǎn)盤(pán)等分成20份)
(1)小華購(gòu)物450元,他獲得購(gòu)物券的概率是多少?
(2)小麗購(gòu)物600元,那么她獲得100元以上(包括100元)券的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一架梯子長(zhǎng)25米,斜靠在一面墻上,梯子底端離墻7米。
(1)這個(gè)梯子的頂端離地面有多高?
(2)如果梯子的頂端下滑了4米,那么梯子的底端在水平方向滑動(dòng)了幾米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com