【題目】已知四邊形,∠DAB=DCB,對角線交于點(diǎn).分別添加下列條件之一:①;②;③;④∠ABC=ADC,能使四邊形成為平行四邊形,則正確的選項(xiàng)有_____.(填寫序號)

【答案】①④

【解析】

根據(jù)平行四邊形的判定定理:(1)兩組對邊分別平行的四邊形是平行四邊形;(2)兩組對邊分別相等的四邊形是平行四邊形.(3)一組對邊平行且相等的四邊形是平行四邊形.(4)兩組對角分別相等的四邊形是平行四邊形.(5)對角線互相平分的四邊形是平行四邊形進(jìn)行分析即可.

解:①由ABCD,∠DAB=DCB可證明∠ABC=ADC,然后可根據(jù)兩組對角分別相等的四邊形是平行四邊形判定四邊形ABCD是平行四邊形,故此選項(xiàng)正確;

②根據(jù)AB=CD,∠DAB=DCB不能判定四邊形ABCD是平行四邊形,故此選項(xiàng)不正確;

③∠DAB=DCBOA=OC不能判定四邊形ABCD是平行四邊形,故此選項(xiàng)不正確;

④由∠DAB=DCB,∠ABC=ADC可根據(jù)兩組對角分別相等的四邊形是平行四邊形判定四邊形ABCD是平行四邊形,故此選項(xiàng)正確.

∴正確的選項(xiàng)有①④;

故答案為:①④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,完成任務(wù):

自相似圖形

定義:若某個圖形可分割為若干個都與它相似的圖形,則稱這個圖形是自相似圖形.例如:正方形ABCD中,點(diǎn)E、F、G、H分別是AB、BC、CD、DA邊的中點(diǎn),連接EG,HF交于點(diǎn)O,易知分割成的四個四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.

任務(wù):

(1)圖1中正方形ABCD分割成的四個小正方形中,每個正方形與原正方形的相似比為   ;

(2)如圖2,已知ABC中,ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)ABC也是“自相似圖形”,他的思路是:過點(diǎn)C作CDAB于點(diǎn)D,則CD將ABC分割成2個與它自己相似的小直角三角形.已知△ACD∽△ABC,則ACD與ABC的相似比為   ;

(3)現(xiàn)有一個矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).

請從下列A、B兩題中任選一條作答:我選擇   題.

A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個全等矩形,且與原矩形都相似,則a=   (用含b的式子表示);

如圖3﹣2若將矩形ABCD縱向分割成n個全等矩形,且與原矩形都相似,則a=   (用含n,b的式子表示);

B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個全等矩形,再將剩余的部分橫向分割成3個全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含b的式子表示);

如圖4﹣2,若將矩形ABCD先縱向分割出m個全等矩形,再將剩余的部分橫向分割成n個全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含m,n,b的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一筆直的海岸線l上有A、B兩個碼頭,A在B的正東方向,一艘小船從A碼頭沿它的北偏西60°的方向行駛了20海里到達(dá)點(diǎn)P處,此時(shí)從B碼頭測得小船在它的北偏東45°的方向.求此時(shí)小船到B碼頭的距離(即BP的長)和A、B兩個碼頭間的距離(結(jié)果都保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,的對邊分別記為,,,由下列條件不能判定為直角三角形的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形的一條邊長為8,則它的兩條對角線可以是(

A.612B.610C.68D.66

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:直線軸、軸分別相交于點(diǎn)和點(diǎn),點(diǎn)在線段上.將沿折疊后,點(diǎn)恰好落在邊上點(diǎn)處.

1)直接寫出點(diǎn)、點(diǎn)的坐標(biāo):

2)求的長;

3)點(diǎn)為平面內(nèi)一動點(diǎn),且滿足以、、為頂點(diǎn)的四邊形為平行四邊形,請直接回答:

①符合要求的點(diǎn)有幾個?

②寫出一個符合要求的點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB﹣BC﹣CD是一根三節(jié)棍,其中線段AB、BC、CD首尾順次相連,且AB=BC=CD,將這個三節(jié)棍擺放在△AMD中,使它的兩個端點(diǎn)與△AMD兩個頂點(diǎn)重合,三節(jié)棍的首尾兩節(jié)在△AMD的邊上,則AB﹣BC﹣CD就是△AMD的配套三節(jié)棍.

(1)若∠A=60°,AD=60,求△AMD的配套三節(jié)棍的總長;

(2)AM=AD,AMD的配套三節(jié)棍AB﹣BC﹣CD中一邊BC平行于MD,利用直尺圓規(guī)畫出圖形,并求出∠A的度數(shù).(保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD,AEBC交點(diǎn)E,連接DE,F(xiàn)DE上一點(diǎn),且∠AFE=B=60°.

(1)求證:△ADF∽△DEC;

(2)AE=3,AD=4,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)計(jì)算:①+

②(×

③(2015π0 +|2|+÷+()1

2)解方程:① =

查看答案和解析>>

同步練習(xí)冊答案