【題目】探究與發(fā)現(xiàn):
如圖1所示的圖形,像我們常見的學習用品﹣﹣圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,那么在這一個簡單的圖形中,到底隱藏了哪些數(shù)學知識呢?下面就請你發(fā)揮你的聰明才智,解決以下問題:
(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說明理由;
(2)請你直接利用以上結(jié)論,解決以下三個問題:
①如圖2,把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點B、C,若∠A=50°,則∠ABX+∠ACX=__________°;
②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度數(shù);
③如圖4,∠ABD,∠ACD的10等分線相交于點G1、G2…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度數(shù).
【答案】(1)∠BDC=∠A+∠B+∠C;(2)①40°;②∠DCE=90°;③∠A =70°.
【解析】試題分析:(1)、連接AD并延長至點F,根據(jù)外角的性質(zhì)得出∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,從而得出我們所需要的結(jié)論;(2)、①、根據(jù)第一題的結(jié)論得出答案;②、根據(jù)第一題的結(jié)論得出∠ADB+∠AEB=80°,然后根據(jù)∠DCE=(∠ADB+∠AEB)+∠A得出答案;③、根據(jù)題意得出∠BG1C=(∠ABD+∠ACD)+∠A,然后設(shè)∠A為x°,根據(jù)∠ABD+∠ACD=140°-x°得出答案.
試題解析:(1)、連接AD并延長至點F,由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;
且∠BDC=∠BDF+∠CDF及∠BAC=∠BAD+∠CAD;相加可得∠BDC=∠A+∠B+∠C;
(2)、①、由(1)的結(jié)論易得:∠ABX+∠ACX+∠A=∠BXC, 又因為∠A=50°,∠BXC=90°,
所以∠ABX+∠ACX=90°-50°=40°;
②、由(1)的結(jié)論易得∠DBE=∠A+∠ADB+∠AEB,易得∠ADB+∠AEB=80°;
而∠DCE=(∠ADB+∠AEB)+∠A, 代入∠DAE=50°,∠DBE=130°,易得∠DCE=90°;
③、∠BG1C=(∠ABD+∠ACD)+∠A, ∵∠BG1C=77°, ∴設(shè)∠A為x°,
∵∠ABD+∠ACD=140°-x° ∴(140-x)+x=77,x=70 ∴∠A為70°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是菱形ABCD的對角線BD上一點,連接CP并延長交AD于E,交BA的延長線于點F.
(1)求證:△APD≌△CPD;
(2)求證:△APE∽△FPA;
(3)猜想:線段PC,PE,PF之間存在什么關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在下列條件中,不能證明△ABD≌△ACD的是( 。
A. BD=DC,AB=AC B. ∠ADB=∠ADC,BD=DC
C. ∠B=∠C,∠BAD=∠CAD D. ∠B=∠C,BD=DC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】做如下操作:在等腰三角形ABC中,AB= AC,AD平分∠BAC,交BC于點D.將△ABD作關(guān)于直線AD的軸對稱變換,所得的象與△ACD重合.
對于下列結(jié)論:①在同一個三角形中,等角對等邊;②在同一個三角形中,等邊對等角;
③等腰三角形的頂角平分線、底邊上的中線和高互相重合.
由上述操作可得出的是 ▲ (將正確結(jié)論的序號都填上).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(8分)如圖,△ABC的兩條高AD、BE相交于點H,且AD=BD,試說明下列結(jié)論成立的理由。(1)∠DBH=∠DAC;(2)△BDH≌△ADC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,取點D與點E,使得AD=AE,∠BAE=∠CAD,連結(jié)BD與CE交于點O.求證:
(1)△ABD≌△ACE;
(2)OB=OC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為點E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B.
(1)求證:△ADF∽△DEC;
(2)若AB=4,AD=3 , AF=2 , 求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,BE⊥AC于E,且D、E分別是AB、AC的中點.延長BC至點F,使CF=CE.
(1)求∠ABC的度數(shù);
(2)求證:BE=FE;
(3)若AB=2,求△CEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AC=BC=10 cm,AB=12 cm,點D是AB的中點,連結(jié)CD,動點P從點A出發(fā),沿A→C→B的路徑運動,到達點B時運動停止,速度為每秒2 cm,設(shè)運動時間為秒.
(1)求CD的長;
(2)當為何值時,△ADP是直角三角形?
(3)直接寫出:當為何值時,△ADP是等腰三角形?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com