【題目】學習完第五章《相交線與平行線》后,王老師布置了一道兒何證明題如下:如圖,已知直線ABCD被直線EF所截,FG平分∠EFD,∠1=∠280°,求∠BGF的度數(shù).善于動腦的小軍快速思考,找到了解題方案,并書寫出了如下不完整的解題過程.請你將該題解題過程補充完整:

解:∵∠1=∠280°(已知)

ABCD   

∴∠BGF+3180°   

∵∠2+EFD180°(鄰補角的定義),

∴∠EFD   °(等式性質(zhì))

FG平分∠EFD(已知),

∴∠EFD=23(角平分線的定義)

∴∠3   °(等式性質(zhì))

∴∠BGF   °(等式性質(zhì))

【答案】同位角相等,兩直線平行,兩直線平行,同旁內(nèi)角互補,100,50,130

【解析】

根據(jù)平行線性質(zhì)和判定,鄰補角定義,角平分線定義和等式性質(zhì)進行分析即可.

解:∵∠1=∠280°(已知)

ABCD(同位角相等,兩直線平行)

∴∠BGF+3180°(兩直線平行,同旁內(nèi)角互補)

∵∠2+EFD180°(鄰補角的定義),

∴∠EFD100°(等式性質(zhì))

FG平分∠EFD(已知),

∴∠EFD=23(角平分線的定義)

∴∠350°(等式性質(zhì))

∴∠BGF130°(等式性質(zhì))

故答案為:同位角相等,兩直線平行,兩直線平行,同旁內(nèi)角互補,100,50,130

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,點邊上,,相交于點.下列說法:

1)若,則

2)若,則;

3)若,則

其中正確的有( 。﹤.

A. 3B. 2C. 1D. 0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,是邊上的兩點,且有,則圖中等腰三角形的個數(shù)是(

A.2B.6C.5D.7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是正三角形ABC內(nèi)的一點,且PA=6,PB=8,PC=10,若將PAC繞點A逆時針旋轉(zhuǎn)后得到P′AB.

(1)求點P與點P′之間的距離;

(2)求∠APB的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形中,,再添加下列其中一個條件后,四邊形不一定是平行四邊形的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長均為l的小正方形網(wǎng)格紙中,ABC的頂點,A、BC均在格點上,O為直角坐標系的原點,點A-10)在x軸上.

1)以O為位似中心,將ABC放大,使得放大后的A1B1C1ABC的相似比為21,要求所畫A1B1C1ABC在原點兩側(cè);

2)分別寫出B1、C1的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AE交⊙O于點F,且與⊙O的切線CD互相垂直,垂足為D

1)求證:∠EAC=CAB

2)若CD=4,AD=8,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】第二十四屆冬季奧林匹克運動會將于2022年在北京市和張家口市舉行.為了調(diào)查學生對冬奧知識的了解情況,從甲、乙兩校各隨機抽取20名學生進行了相關(guān)知識測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進行了整理、描述和分析.下面給出了部分信息.

a.甲校20名學生成績的頻數(shù)分布表和頻數(shù)分布直方圖如下:

甲校學生樣本成績頻數(shù)分布表

成績m(分)

頻數(shù)(人數(shù))

頻率

1

0.05

c

0.10

3

0.15

a

b

6

0.30

合計

20

1.0

1

1

b.甲校成績在的這一組的具體成績是:81 81 89 83 89 82 83 89

c.甲、乙兩校成績的平均分、中位數(shù)、眾數(shù)、方差如下:

學校

平均分

中位數(shù)

眾數(shù)

方差

84

n

89

129.7

84.2

85

85

138.6

2

根據(jù)以上圖表提供的信息,解答下列問題:

1)表1a=______;表2中的中位數(shù)n =_______;

2)補全圖1甲校學生樣本成績頻數(shù)分布直方圖;

3)在此次測試中,某學生的成績是84分,在他所屬學校排在前10名,由表中數(shù)據(jù)可知該學生是______校的學生(填),理由是________;

4)假設(shè)甲校1000名學生都參加此次測試,若成績80分及以上為優(yōu)秀,估計成績優(yōu)秀的學生人數(shù)為_______人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2-2mx+m2-1

1當二次函數(shù)的圖象經(jīng)過坐標原點O0,0時,求二次函數(shù)的解析式;

2如圖,當m=2時,該拋物線與y軸交于點C,頂點為D,求C、D兩點的坐標;

32的條件下,x軸上是否存在一點P,使得PC+PD最短?若P點存在,求出P點的坐標;若P點不存在,請說明理由

查看答案和解析>>

同步練習冊答案