【題目】如圖,是的一條中線,為邊上一點且相交于四邊形的面積為,則的面積是( )
A.B.C.D.
【答案】B
【解析】
連結(jié)BF,設(shè)S△BDF=x,則S△BEF=6-x,由CD是中線可以得到S△ADF=S△BDF,S△BDC=S△ADC,由BE=2CE可以得到S△CEF=S△BEF,S△ABE=S△ABC,進而可用兩種方法表示△ABC的面積,由此可得方程,進而得解.
解:如圖,連接BF,
設(shè)S△BDF=x,則S△BEF=6-x,
∵CD是中線,
∴S△ADF=S△BDF=x,S△BDC= S△ADC=△ABC,
∵BE=2CE,
∴S△CEF=S△BEF=(6-x),S△ABE=S△ABC,
∵S△BDC= S△ADC=△ABC,
∴S△ABC=2S△BDC
=2[x+(6-x)]
=18-x,
∵S△ABE=S△ABC,
∴S△ABC=S△ABE
=[2x+ (6-x)]
=1.5x+9,
∴18-x =1.5x+9,
解得:x=3.6,
∴S△ABC=18-x,
=18-3.6
=14.4,
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,河的兩岸l1與l2相互平行,A,B是l1上的兩點,C,D是l2上的兩點,某人在點A處測得∠CAB=90°,∠DAB=30°,再沿AB方向前進20米到達點E(點E在線段AB上),測得∠DEB=60°,求C,D兩點間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊上一點,∠B=30°∠DAB=45°.(1)求∠DAC的度數(shù);(2)請說明:AB=CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果∠α和∠β互補,且∠α>∠β,則下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°③(∠α+∠β);④(∠α﹣∠β).正確的有( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖 ,是一個8×10正方形格紙,△ABC中A點坐標為(-2,1).
(1)補全坐標系并指出△ABC和△A'B'C'滿足什么幾何變換(直接寫答案)?
(2)作△A'B'C'關(guān)于x軸對稱圖形△A''B''C'';
(3)△ABC和△A''B''C''滿足什么幾何變換?求A''、B''、C''三點坐標(直接寫答案).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=x2﹣2mx﹣3m2(m>0)與x軸交于A、B兩點,A點在B點左邊,與y軸交于C點,頂點為M.
(1)當m=1時,求點A、B、M坐標;
(2)如圖(1)的條件下,若P為拋物線上一個動點,以AP為斜邊的等腰直角的直角頂點Q在對稱軸上,(A、P、Q按順時針方向排列),求P點坐標.
(3)如圖2,若一次函數(shù)y=kx+b過B點且與拋物線只有一個公共點,平移直線y=kx+b,使其過拋物線的頂點M,與拋物線另一個交點為D,與x軸交于F點,當m變化時,求證:DF:MF是定值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的面積為6,AC3,現(xiàn)將△ABC沿AB所在直線翻折,使點C落在直線AD上的處,P為直線AD上的任意一點,則線段BP的最短長度為_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,P為AD邊上一點,沿直線BP將△ABP翻折至△EBP(點A的對應點為點E),PE與CD相交于點O,且OE=OD.
(1)求證:PE=DH;
(2)若AB=10,BC=8,求DP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O過點B、C,圓心O在等腰直角三角形ABC的內(nèi)部,∠BAC=90°,OA=1,BC=6,則⊙O的半徑為( )
A.6
B.13
C.
D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com