17.如圖,菱形ABCD的周長為32,對角線AC、BD相交于點(diǎn)O,E為BC的中點(diǎn),則OE=4.

分析 先根據(jù)菱形的性質(zhì)得到BC=8,AC⊥BD,然后根據(jù)直角三角形斜邊上的中線性質(zhì)求解.

解答 解:∵四邊形ABCD為菱形,
∴BC=8,AC⊥BD,
∵E為BC的中點(diǎn),
∴OE=$\frac{1}{2}$BC=4.
故答案為4.

點(diǎn)評 本題考查了菱形的性質(zhì):有一組鄰邊相等的平行四邊形叫做菱形.熟練掌握菱形的性質(zhì)(菱形具有平行四邊形的一切性質(zhì); 菱形的四條邊都相等; 菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.在?ABCD中,∠BAD的平分線交直線BC于點(diǎn)E,交直線DC于點(diǎn)F.

(1)在圖1中證明CE=CF;
(2)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連結(jié)DB、DG(如圖2),求∠BDG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.解方程(不等式)組
(1)$\left\{\begin{array}{l}\frac{y+1}{4}=\frac{x+2}{3}\\ 2x-3y=1\end{array}\right.$
(2)$\left\{\begin{array}{l}9x+5<8x+7\\ \frac{4}{3}x+2>1-\frac{2}{3}x\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.已知:如圖,AB∥CD,∠A=∠D,試說明 AC∥DE 成立的理由.
下面是彬彬同學(xué)進(jìn)行的推理,請你將彬彬同學(xué)的推理過程補(bǔ)充完整.
解:∵AB∥CD (已知)
∴∠A=∠ACD(兩直線平行,內(nèi)錯角相等)
又∵∠A=∠D已知
∴∠ACD=∠D(等量代換)
∴AC∥DE內(nèi)錯角相等,兩直線平行.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.如圖,已知?ABCD中,AE平分∠BAD,CF平分∠BCD,分別交BC、AD于E、F.求證:AF=EC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

2.已知一個等腰三角形的一條邊長為6,另一條邊長為13,則它的周長為( 。
A.25B.32C.25或32D.19

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,己知 AB∥CD,∠BAD 和∠BCD 的平分線交于點(diǎn)E,∠1=100°,∠BAD=m°,則∠AEC的度數(shù)為( 。
A.B.(40+$\frac{m}{2}$)°C.(40-$\frac{m}{2}$)°D.(50+$\frac{m}{2}$)°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜邊AC,交AB于D,E是垂足,連接CD,若BD=2,則AB的長是( 。
A.2$\sqrt{3}$B.4C.4$\sqrt{3}$D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.已知點(diǎn)A、B、C、D在⊙O上,AB∥CD,AB=24,CD=10,⊙O的半徑為13,求梯形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊答案