【題目】甲、乙兩所醫(yī)院分別有一男一女共4名醫(yī)護(hù)人員支援湖北武漢抗擊疫情.

(1)若從甲、乙兩醫(yī)院支援的醫(yī)護(hù)人員中分別隨機(jī)選1名,則所選的2名醫(yī)護(hù)人員性別相同的概率是    

(2)若從支援的4名醫(yī)護(hù)人員中隨機(jī)選2名,用列表或畫(huà)樹(shù)狀圖的方法求出這2名醫(yī)護(hù)人員來(lái)自同一所醫(yī)院的概率.

【答案】1;(2

【解析】

1)根據(jù)甲、乙兩所醫(yī)院分別有一男一女,列出樹(shù)狀圖,得出所有情況,再根據(jù)概率公式即可得出答案;

2)根據(jù)題意先畫(huà)出樹(shù)狀圖,得出所有情況數(shù),再根據(jù)概率公式即可得出答案.

解:(1)根據(jù)題意畫(huà)圖如下:

共有4種情況,其中所選的2名教師性別相同的有2種,

則所選的2名教師性別相同的概率是:;

故答案為:.

(2)將甲、乙兩醫(yī)院的醫(yī)生分別記為男1、女1、男2、女2,畫(huà)樹(shù)形圖得:

所以共有12種等可能的結(jié)果,滿足要求的有4種.

P(2名醫(yī)生來(lái)自同一所醫(yī)院的概率)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖平面直角坐標(biāo)系,已知二次函數(shù)m0)的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為點(diǎn)D

1)點(diǎn)B的坐標(biāo)為   ,點(diǎn)D的坐標(biāo)為   ;(用含有m的代數(shù)式表示)

2)連接CD,BC

①若,求二次函數(shù)的表達(dá)式;

②若把ABC沿著直線BC翻折,點(diǎn)A恰好在直線CD上,求二次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,王老師將某班近三個(gè)月跳躍類項(xiàng)目的訓(xùn)練情況做了統(tǒng)計(jì),并繪制了折線統(tǒng)計(jì)圖,則根據(jù)圖中信息以下判斷錯(cuò)誤的是(

A.男女生5月份的平均成績(jī)一樣

B.4月到6月,女生平均成績(jī)一直在進(jìn)步

C.4月到5月,女生平均成績(jī)的增長(zhǎng)率約為

D.5月到6月女生平均成績(jī)比4月到5月的平均成績(jī)?cè)鲩L(zhǎng)快

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在半徑為4的⊙O中,CD為直徑,AB⊥CD且過(guò)半徑OD的中點(diǎn),點(diǎn)E為⊙O上一動(dòng)點(diǎn),CF⊥AE于點(diǎn)F.當(dāng)點(diǎn)E從點(diǎn)B出發(fā)順時(shí)針運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)F所經(jīng)過(guò)的路徑長(zhǎng)為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=﹣x2+bx+cx軸交于A、B兩點(diǎn)(點(diǎn)AB左邊),與y軸交于點(diǎn)C

1)如圖1,已知A(1,0),B(30)

①直接寫(xiě)出拋物線的解析式;

②點(diǎn)Hx軸上,M(1,0),連接AC、MC、HC,若CM平分∠ACH,求H的坐標(biāo);

2)如圖2,直線y=﹣1與拋物線y=﹣x2+bx+c交于拋物線對(duì)稱軸右側(cè)的點(diǎn)為點(diǎn)D,點(diǎn)E與點(diǎn)D關(guān)于x軸對(duì)稱.試判斷直線DB與直線AE的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)以致用:?jiǎn)栴}1:怎樣用長(zhǎng)為的鐵絲圍成一個(gè)面積最大的矩形?

小學(xué)時(shí)我們就知道結(jié)論:圍成正方形時(shí)面積最大,即圍成邊長(zhǎng)為的正方形時(shí)面積最大為.請(qǐng)用你所學(xué)的二次函數(shù)的知識(shí)解釋原因.

思考驗(yàn)證:?jiǎn)栴}2:怎樣用鐵絲圍一個(gè)面積為且周長(zhǎng)最小的矩形?

小明猜測(cè):圍成正方形時(shí)周長(zhǎng)最。

為了說(shuō)明其中的道理,小明翻閱書(shū)籍,找到下面的結(jié)論:

、均為正實(shí)數(shù))中,若為定值,則,只有當(dāng)時(shí),有最小值

思考驗(yàn)證:證明:、均為正實(shí)數(shù))

請(qǐng)完成小明的證明過(guò)程:

證明:對(duì)于任意正實(shí)數(shù)

  

解決問(wèn)題:

1)若,則  (當(dāng)且僅當(dāng)  時(shí)取

2)運(yùn)用上述結(jié)論證明小明對(duì)問(wèn)題2的猜測(cè);

3)填空:當(dāng)時(shí),的最小值為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了發(fā)展鄉(xiāng)村旅游,建設(shè)美麗鄉(xiāng)村,某中學(xué)七年級(jí)(1)班同學(xué)都積極參加了植樹(shù)活動(dòng),將今年三月份該班同學(xué)的植樹(shù)情況繪制成如圖所示的不完整的統(tǒng)計(jì)圖.已知植樹(shù)量為2株的人數(shù)占總?cè)藬?shù)的32%

1)該班的總?cè)藬?shù)為____________,植樹(shù)株數(shù)的眾數(shù)是____________,植樹(shù)株數(shù)的中位數(shù)是____________;

2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)若將該班同學(xué)的植樹(shù)情況繪制成扇形統(tǒng)計(jì)圖,求“植樹(shù)量為3株”所對(duì)應(yīng)的扇形的園心角度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一般情況下,學(xué)生注意力上課后逐漸增強(qiáng),中間有段時(shí)間處于較理想的穩(wěn)定狀態(tài),隨后開(kāi)始分散.實(shí)驗(yàn)結(jié)果表明,學(xué)生注意力指數(shù)y隨時(shí)間x(min)的變化規(guī)律如圖所示(其中分別為線段,為雙曲線的一部分)

1)上課后第與第相比較,何時(shí)學(xué)生注意力更集中?

2)某道難題需連續(xù)講,為保證效果,學(xué)生注意力指數(shù)不宜低于,老師能否在所需要求下講完這道題?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:對(duì)于任意正實(shí)數(shù)a、b,∵≥0, ∴≥0

,只有當(dāng)ab時(shí),等號(hào)成立.

結(jié)論:在a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥,只有當(dāng)ab時(shí),a+b有最小值

根據(jù)上述內(nèi)容,回答下列問(wèn)題:

m0,只有當(dāng)m 時(shí),有最小值

思考驗(yàn)證:如圖1AB為半圓O的直徑,C為半圓上任意一點(diǎn)(與點(diǎn)A、B不重合),過(guò)點(diǎn)CCDAB,垂足為D,ADa,DBb

試根據(jù)圖形驗(yàn)證,并指出等號(hào)成立時(shí)的條件.

探索應(yīng)用:如圖2,已知A(3,0),B(0,-4),P為雙曲線x0)上的任意一點(diǎn),過(guò)點(diǎn)PPCx軸于點(diǎn)C,PDy軸于點(diǎn)D.求四邊形ABCD面積的最小值,并說(shuō)明此時(shí)四邊形ABCD的形狀.

查看答案和解析>>

同步練習(xí)冊(cè)答案