【題目】點(diǎn)B(a,5)在第二象限,點(diǎn)C在y軸上移動(dòng),以BC為斜邊作等腰直角△BCD,我們發(fā)現(xiàn)直角頂點(diǎn)D點(diǎn)隨著C點(diǎn)的移動(dòng)也在一條直線上移動(dòng),這條直線的函數(shù)表達(dá)式是

【答案】y=﹣x+5或y=x+5
【解析】解:如圖,作BF⊥y軸于F,交CD于G,連接DF.
∵∠BGD=∠CGF,∠BDG=∠CFG=90°,
∴△BGD∽△CGF,
= ,
= ,∵∠DGF=∠BGC,
∴△DGF∽△BGC,
∴∠DFG=∠GCB=45°,
∴當(dāng)點(diǎn)C運(yùn)動(dòng)時(shí),點(diǎn)D在直線DF上運(yùn)動(dòng),且∠DFB=45°,
易知直線DF∥直線y=﹣x,∵F(0,5),
∴直線DF的解析式為y=﹣x+5,
同法當(dāng)D′在BC的下方時(shí),點(diǎn)D′在Z直線FD′運(yùn)動(dòng),且∠CFD′=45°,
易知D′F∥直線y=x,直線D′F的解析式為y=x+5,
所以答案是y=﹣x+5或y=x+5.
【考點(diǎn)精析】關(guān)于本題考查的確定一次函數(shù)的表達(dá)式,需要了解確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校教學(xué)樓AB的后面有一建筑物CD,在距離CD的正后方30米的觀測(cè)點(diǎn)P處,以22°的仰角測(cè)得建筑物的頂端C恰好擋住教學(xué)樓的頂端A,而在建筑物CD上距離地面3米高的E處,測(cè)得教學(xué)樓的頂端A的仰角為45°,求教學(xué)樓AB的高度.
(參考數(shù)據(jù):sin22°≈ ,cos22°≈ ,tan22°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E是CD的中點(diǎn),AE是延長線交BC的延長線于F,分別連接AC,DF,解答下列問題:
(1)求證:△ADE≌△FCE;
(2)若DC平分∠ADF,試確定四邊形ACFD是什么特殊四邊形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:直線l1與l2相交于點(diǎn)O,對(duì)于平面內(nèi)任意一點(diǎn)M,點(diǎn)M到直線l1、l2的距離分別為p、q,則稱有序?qū)崝?shù)對(duì)(p,q)是點(diǎn)M的“距離坐標(biāo)”,根據(jù)上述定義,“距離坐標(biāo)”是(1,2)的點(diǎn)的個(gè)數(shù)是( 。
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EBC邊上的點(diǎn),連接AE、DE,將△DEC沿線段DE翻折,點(diǎn)C恰好落在線段AE上的點(diǎn)F處.若AB=6,BE : EC=4 : 1,則線段DE的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y= x2+2x與x軸相交于O、B,頂點(diǎn)為A,連接OA.

(1)求點(diǎn)A的坐標(biāo)和∠AOB的度數(shù);
(2)若將拋物線y= x2+2x向右平移4個(gè)單位,再向下平移2個(gè)單位,得到拋物線m,其頂點(diǎn)為點(diǎn)C.連接OC和AC,把△AOC沿OA翻折得到四邊形ACOC′.試判斷其形狀,并說明理由;
(3)在(2)的情況下,判斷點(diǎn)C′是否在拋物線y= x2+2x上,請(qǐng)說明理由.
(4)若點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),試探究在拋物線m上是否存在點(diǎn)Q,使以點(diǎn)O、P、C、Q為頂點(diǎn)的四邊形是平行四邊形,且OC為該四邊形的一條邊?若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由. (參考公式:二次函數(shù)y=ax2+bx+c(a≠0)圖象的頂點(diǎn)坐標(biāo)為( , ),對(duì)稱軸是直線x= .)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司需招聘一名員工,對(duì)應(yīng)聘者甲、乙、丙從筆試、面試、體能三個(gè)方面進(jìn)行量化考核.甲、乙、丙各項(xiàng)得分如下表:

85

80

75

80

90

73

83

79

90

(1)根據(jù)三項(xiàng)得分的平均分,從高到低確定三名應(yīng)聘者的排名順序.

(2)該公司規(guī)定:筆試,面試、體能得分分別不得低于80分,80分,70分,并按60%,30%,10%的比例計(jì)入總分(不計(jì)其他因素條件),請(qǐng)你說明誰將被錄用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雖然近幾年無錫市政府加大了太湖水治污力度,但由于大規(guī)模、高強(qiáng)度的經(jīng)濟(jì)活動(dòng)和日益增加的污染負(fù)荷,使部分太湖水域水質(zhì)惡化,富營養(yǎng)化不斷加劇.為了保護(hù)水資源,我市制定一套節(jié)水的管理措施,其中對(duì)居民生活用水收費(fèi)作如下規(guī)定:

月用水量(噸)

單價(jià)(元/噸)

不大于10噸部分

1.5

大于10噸不大于m噸部分(20≤m≤50)

2

大于m噸部分

3


(1)若某用戶六月份用水量為18噸,求其應(yīng)繳納的水費(fèi);
(2)記該用戶六月份用水量為x噸,繳納水費(fèi)為y元,試列出y關(guān)于x的函數(shù)關(guān)系式;
(3)若該用戶六月份用水量為40噸,繳納水費(fèi)y元的取值范圍為70≤y≤90,試求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的頂點(diǎn)A、C分別在直線ab上,且ab , ∠1=65°,則∠2的度數(shù)為

A.65°
B.55°
C.35°
D.25°

查看答案和解析>>

同步練習(xí)冊(cè)答案