【題目】四張大小、形狀都相同的卡片上分別寫有數(shù)字1,2,3,4,把它們放入不透明的盒子中搖勻.

1)從中隨機(jī)抽出1張卡片,抽出的卡片上的數(shù)字恰好是偶數(shù)的概率為   

2)從中隨機(jī)抽出1張卡片,記錄數(shù)字后放回?fù)u勻,再抽出一張卡片,記錄數(shù)字.用樹狀圖或列表法求兩次抽出的卡片上的數(shù)字恰好是兩個(gè)相鄰整數(shù)的概率.

【答案】1;(2)兩次抽出的卡片上的數(shù)字恰好是兩個(gè)相鄰整數(shù)的概率=

【解析】

1)直接利用概率公式求解;

2)畫樹狀圖展示所有16種等可能的結(jié)果數(shù),找出兩次抽出的卡片上的數(shù)字恰好是兩個(gè)相鄰整數(shù)的結(jié)果數(shù),然后根據(jù)概率公式求解.

解:(1)從中隨機(jī)抽出1張卡片,抽出的卡片上的數(shù)字恰好是偶數(shù)的概率=;

故答案為;

2)畫樹狀圖為:

共有16種等可能的結(jié)果數(shù),其中兩次抽出的卡片上的數(shù)字恰好是兩個(gè)相鄰整數(shù)的結(jié)果數(shù)為6

所以兩次抽出的卡片上的數(shù)字恰好是兩個(gè)相鄰整數(shù)的概率=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P和圖形N,給出如下定義:如果Q為圖形N上一個(gè)動(dòng)點(diǎn),P,Q兩點(diǎn)間距離的最大值為dmax,P,Q兩點(diǎn)間距離的最小值為dmin,我們把dmax + dmin的值叫點(diǎn)P和圖形N間的“和距離”,記作dP,圖形N).

1)如圖,正方形ABCD的中心為點(diǎn)O,A(3,3)

點(diǎn)O到線段AB的“和距離”dO,線段AB=

設(shè)該正方形與y軸交于點(diǎn)EF,點(diǎn)P在線段EF上,dP,正方形ABCD=7,求點(diǎn)P的坐標(biāo).

2)如圖2,在(1)的條件下,過(guò)C,D兩點(diǎn)作射線CD,連接AC,點(diǎn)M是射線CD上的一點(diǎn),如果dM,線段AD,直接寫出M點(diǎn)橫坐標(biāo)t取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將矩形ABCD沿對(duì)角線BD翻折,點(diǎn)A落在點(diǎn)A′處,ADBC于點(diǎn)E,點(diǎn)FCD上,連接EF,且CE3CF,如圖1

1)試判斷△BDE的形狀,并說(shuō)明理由;

2)若∠DEF45°,求tanCDE的值;

3)在(2)的條件下,點(diǎn)GBD上,且不與BD兩點(diǎn)重合,連接EG并延長(zhǎng)到點(diǎn)H,使得EHBE,連接BH、DH,將△BDH沿DH翻折,點(diǎn)B的對(duì)應(yīng)點(diǎn)B′恰好落在EH的延長(zhǎng)線上,如圖2.當(dāng)BH8時(shí),求GH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,過(guò)⊙T(半徑為r)外一點(diǎn)P引它的一條切線,切點(diǎn)為Q,若0PQ≤2r,則稱點(diǎn)P為⊙T的伴隨點(diǎn).

1)當(dāng)⊙O的半徑為1時(shí),

①在點(diǎn)A(4,0),B(0,),C(1,)中,⊙O的伴隨點(diǎn)是   ;

②點(diǎn)D在直線yx+3上,且點(diǎn)D是⊙O的伴隨點(diǎn),求點(diǎn)D的橫坐標(biāo)d的取值范圍;

2)⊙M的圓心為M(m,0),半徑為2,直線y2x2x軸,y軸分別交于點(diǎn)E,F.若線段EF上的所有點(diǎn)都是⊙M的伴隨點(diǎn),直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形中,為對(duì)角線上一點(diǎn),過(guò)點(diǎn)于點(diǎn),連接的中點(diǎn),連接

1)如圖1,求證:;

2)將圖1中的繞點(diǎn)逆時(shí)針旋轉(zhuǎn)45°,如圖2,取的中點(diǎn),連接.問(wèn)(1)中的結(jié)論是否仍然成立?若成立,給出證明;若不成立,請(qǐng)說(shuō)明理由.

3)將圖1中的繞點(diǎn)逆時(shí)計(jì)旋轉(zhuǎn)任意角度,如圖3,取的中點(diǎn),連接.問(wèn)(1)中的結(jié)論是否仍然成立?通過(guò)觀察你還能得出什么結(jié)論?(均不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)yx2+bx+c的圖象與x軸交于AB兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C0,﹣3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).

1)分別求出圖中直線和拋物線的函數(shù)表達(dá)式;

2)連接PO、PC,并把△POC沿C O翻折,得到四邊形POPC,那么是否存在點(diǎn)P,使四邊形POPC為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,(為坐標(biāo)原點(diǎn),點(diǎn),點(diǎn)中點(diǎn),連接(繞點(diǎn)順時(shí)針旋轉(zhuǎn),得到,記旋轉(zhuǎn)角為,點(diǎn)的對(duì)應(yīng)點(diǎn)分別是,連接中點(diǎn),連接

1)如圖①,當(dāng)時(shí),求點(diǎn)的坐標(biāo);

2)如圖②,當(dāng)時(shí),求證,且

3)當(dāng)旋轉(zhuǎn)至點(diǎn)共線時(shí),求點(diǎn)的坐標(biāo)(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB3,BC4,P是對(duì)角線AC上的動(dòng)點(diǎn),以點(diǎn)P為圓心,PC長(zhǎng)為半徑作P.當(dāng)P與矩形ABCD的邊相切時(shí),CP的長(zhǎng)為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】疫情期間,阿里巴巴愛(ài)心助農(nóng)計(jì)劃全面啟動(dòng),集合天貓、淘寶、聚劃算、餓了么、盒馬、阿里鄉(xiāng)村事業(yè)部等,組成了線上線下農(nóng)產(chǎn)品銷售的全域網(wǎng)絡(luò),通過(guò)這次愛(ài)心助農(nóng),很多農(nóng)產(chǎn)品從滯銷轉(zhuǎn)變?yōu)槊撲N,以下是某淘寶商家在電商平臺(tái)上推出的.獼猴桃、.芒果這兩種水果,其銷售信息如下表:

品種

銷售信息

5所以內(nèi)(包含5斤),每斤8元;超過(guò)5斤,則超出部分打8

3斤以內(nèi)(包含3斤),每斤10元;超出3斤,所有芒果打9

1)小佳購(gòu)買斤獼猴桃,付款元,請(qǐng)寫出的函數(shù)關(guān)系式;

2)若小佳購(gòu)買10斤獼猴桃,小欣購(gòu)買8斤芒果,比較誰(shuí)的花費(fèi)更低?

查看答案和解析>>

同步練習(xí)冊(cè)答案