【題目】已知:點(diǎn)C、A、D在同一條直線上,∠ABC=∠ADE=α,線段BD、CE交于點(diǎn)M.
(1)如圖1,若AB=AC,AD=AE
①問線段BD與CE有怎樣的數(shù)量關(guān)系?并說明理由;
②求∠BMC的大。ㄓ忙帘硎荆;
(2)如圖2,若AB=BC=kAC,AD=ED=kAE,則線段BD與CE的數(shù)量關(guān)系為 , ∠BMC=(用α表示);
(3)在(2)的條件下,把△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)180°,在備用圖中作出旋轉(zhuǎn)后的圖形(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡),連接EC并延長交BD于點(diǎn)M.則∠BMC=(用α表示).
【答案】
(1)
解:如圖1.
①BD=CE,理由如下:
∵AD=AE,∠ADE=α,
∴∠AED=∠ADE=α,
∴∠DAE=180°﹣2∠ADE=180°﹣2α,
同理可得:∠BAC=180°﹣2α,
∴∠DAE=∠BAC,
∴∠DAE+∠BAE=∠BAC+∠BAE,
即:∠BAD=∠CAE.
在△ABD與△ACE中,
∵ ,
∴△ABD≌△ACE(SAS),
∴BD=CE;
②∵△ABD≌△ACE,
∴∠BDA=∠CEA,
∵∠BMC=∠MCD+∠MDC,
∴∠BMC=∠MCD+∠CEA=∠DAE=180°﹣2α
(2)BD=kCE;90°﹣ α
(3)90°+ 1 2 α
【解析】(2)如圖2.
∵AD=ED,∠ADE=α,
∴∠DAE= =90°﹣ α,同理可得:∠BAC=90°﹣ α,
∴∠DAE=∠BAC,
∴∠DAE+∠BAE=∠BAC+∠BAE,
即:∠BAD=∠CAE.
∵AB=kAC,AD=kAE,
∴AB:AC=AD:AE=k.
在△ABD與△ACE中,
∵AB:AC=AD:AE=k,∠BDA=∠CEA,
∴△ABD∽△ACE,
∴BD:CE=AB:AC=AD:AE=k,∠BDA=∠CEA,
∴BD=kCE;
∵∠BMC=∠MCD+∠MDC,
∴∠BMC=∠MCD+∠CEA=∠DAE=90°﹣ α.故答案為:BD=kCE,90°﹣ α;
(3)如右圖.
∵AD=ED,∠ADE=α,
∴∠DAE=∠AED= =90°﹣ α,同理可得:∠BAC=90°﹣ α,
∴∠DAE=∠BAC,即∠BAD=∠CAE.
∵AB=kAC,AD=kAE,
∴AB:AC=AD:AE=k.
在△ABD與△ACE中,
∵AB:AC=AD:AE=k,∠BAD=∠CAE,
∴△ABD∽△ACE,
∴∠BDA=∠CEA,
∵∠BMC=∠MCD+∠MDC,∠MCD=∠CED+∠ADE=∠CED+α,
∴∠BMC=∠CED+α+∠CEA=∠AED+α=90°﹣ α+α=90°+ α.故答案為:90°+ α.
(1)①先根據(jù)等腰三角形等角對等邊的性質(zhì)及三角形內(nèi)角和定理得出∠DAE=∠BAC,則∠BAD=∠CAE,再根據(jù)SAS證明△ABD≌△ACE,從而得出BD=CE;
②先由全等三角形的對應(yīng)角相等得出∠BDA=∠CEA,再根據(jù)三角形的外角性質(zhì)即可得出∠BMC=∠DAE=180°﹣2α;(2)先根據(jù)等腰三角形等角對等邊的性質(zhì)及三角形內(nèi)角和定理得出∠DAE=∠BAC=90°﹣ α,則∠BAD=∠CAE,再由AB=kAC,AD=kAE,得出AB:AC=AD:AE=k,則根據(jù)兩邊對應(yīng)成比例,且夾角相等的兩三角形相似證出△ABD∽△ACE,得出BD=kCE,∠BDA=∠CEA,然后根據(jù)三角形的外角性質(zhì)即可得出∠BMC=∠DAE=90°﹣ α;(3)先在備用圖中利用SSS作出旋轉(zhuǎn)后的圖形,再根據(jù)等腰三角形等角對等邊的性質(zhì)及三角形內(nèi)角和定理得出∠DAE=∠BAC=90°﹣ α,由AB=kAC,AD=kAE,得出AB:AC=AD:AE=k,從而證出△ABD∽△ACE,得出∠BDA=∠CEA,然后根據(jù)三角形的外角性質(zhì)即可得出∠BMC=90°+ α.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我市美化工程招標(biāo)時(shí),有甲、乙兩個(gè)工程隊(duì)投標(biāo).經(jīng)測算:甲隊(duì)單獨(dú)完成這項(xiàng)工程需要60天;若由甲隊(duì)先做20天,剩下的工程由甲、乙合做24天可完成.
(1)乙隊(duì)單獨(dú)完成這項(xiàng)工程需要多少天?
(2)甲隊(duì)施工一天,需付工程款3.5萬元,乙隊(duì)施工一天需付工程款2萬元.若該工程計(jì)劃在70天內(nèi)完成,在不超過計(jì)劃天數(shù)的前提下,是由甲隊(duì)或乙隊(duì)單獨(dú)完成該工程省錢?還是由甲乙兩隊(duì)全程合作完成該工程省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的周長為24cm,對角線AC、BD相交于O點(diǎn),E是AD的中點(diǎn),連接OE,則線段OE的長等于( )
A.3cm
B.4cm
C.2.5cm
D.2cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市中小學(xué)全面開展“陽光體育”活動(dòng),某校在大課間中開設(shè)了A(體操)、B(乒乓球)、C(毽球)、D(跳繩)四項(xiàng)活動(dòng).為了解學(xué)生最喜歡哪一項(xiàng)活動(dòng),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖。
請根據(jù)統(tǒng)計(jì)圖回答下列問題:
(1)這次被調(diào)查的學(xué)生共有_____人;
(2)請將統(tǒng)計(jì)圖2補(bǔ)充完整;
(3)統(tǒng)計(jì)圖1中B項(xiàng)目對應(yīng)的扇形的圓心角是 _____度;
(4)已知該校共有學(xué)生1000人,根據(jù)調(diào)查結(jié)果估計(jì)該校喜歡體操的學(xué)生有_____人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,把矩形COAB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α角,得到矩形CFED.設(shè)FC與AB交于點(diǎn)H,且A(0,3),C(5,0).
(1)當(dāng)α=60°時(shí),△CBD的形狀是 _________;
(2)當(dāng)0°<α<90°旋轉(zhuǎn)過程中,連結(jié)OH,當(dāng)△OHC為等腰三角形時(shí),請直接寫出點(diǎn)H的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一條拋物線與x軸相交于A、B兩點(diǎn),其頂點(diǎn)P在折線C﹣D﹣E上移動(dòng),若點(diǎn)C、D、E的坐標(biāo)分別為(﹣1,4)、(3,4)、(3,1),點(diǎn)B的橫坐標(biāo)的最小值為1,則點(diǎn)A的橫坐標(biāo)的最大值為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點(diǎn)G,連結(jié)AG、CF.下列結(jié)論中正確結(jié)論的個(gè)數(shù)是 ( )
①△ABG≌△AFG;②∠EAG=450;③BG=GC; ④AG∥CF; ⑤S△FGC=3.6
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著互聯(lián)網(wǎng)的發(fā)展,互聯(lián)網(wǎng)消費(fèi)逐漸深入人們生活,如圖是“滴滴順風(fēng)車”與“滴滴快車”的行駛里程x(公里)與計(jì)費(fèi)y(元)之間的函數(shù)關(guān)系圖象,下列說法:
(1)“快車”行駛里程不超過5公里計(jì)費(fèi)8元;
(2)“順風(fēng)車”行駛里程超過2公里的部分,每公里計(jì)費(fèi)1.2元;
(3)A點(diǎn)的坐標(biāo)為(6.5,10.4);
(4)從哈爾濱西站到會(huì)展中心的里程是15公里,則“順風(fēng)車”要比“快車”少用3.4元,其中正確的個(gè)數(shù)有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com