【題目】如圖,在平面直角坐標(biāo)系中,菱形的頂點(diǎn)與原點(diǎn)重合,點(diǎn)軸的正半軸上,點(diǎn)在反比例函數(shù)的圖象上,點(diǎn)的坐標(biāo)為

1)求的值;

2)若將菱形沿軸正方向平移,當(dāng)菱形的另一個(gè)頂點(diǎn)恰好落在函數(shù)的圖象上時(shí),求菱形平移的距離.

【答案】1;(2

【解析】

1)根據(jù)勾股定理求出OD的長(zhǎng)度,再結(jié)合菱形的性質(zhì)定理可得A點(diǎn)坐標(biāo),由此可求k的值;

2BD可能落在反比例函數(shù)的圖象上,分兩種情況討論,根據(jù)平移后縱坐標(biāo)不變,求得平移后點(diǎn)的橫坐標(biāo),由此可求得平移后的距離.

解:(1)過點(diǎn)于點(diǎn)軸于點(diǎn),

∵點(diǎn)的坐標(biāo)為,

∴點(diǎn)的坐標(biāo)為,

2)由(1)可知反比例函數(shù)的解析式為,

將菱形沿軸正方向平移,

①若使點(diǎn)落在反比例函數(shù)的圖象上的點(diǎn)處,

,

點(diǎn)的縱坐標(biāo)為2,

設(shè)點(diǎn),

,解得,

,

∴菱形平移的距離為

②同理,若使點(diǎn)落在反比例函數(shù)的圖象上,對(duì)應(yīng)點(diǎn)的縱坐標(biāo)為3

此時(shí)該點(diǎn)橫坐標(biāo)為:

所以,菱形平移的距離為

綜上,菱形平移的距離為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以AOB的頂點(diǎn)O為圓心,適當(dāng)長(zhǎng)為半徑畫弧,交OA于點(diǎn)C,交OB于點(diǎn)D.再分別以點(diǎn)CD為圓心,大于CD的長(zhǎng)為半徑畫弧,兩弧在AOB內(nèi)部交于點(diǎn)E,過點(diǎn)E作射線OE,連CD.則下列說法錯(cuò)誤的是

A.射線OEAOB的平分線

BCOD是等腰三角形

CC、D兩點(diǎn)關(guān)于OE所在直線對(duì)稱

DO、E兩點(diǎn)關(guān)于CD所在直線對(duì)稱

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,, ,.點(diǎn)是斜邊AB上一個(gè)動(dòng)點(diǎn).過點(diǎn) 垂足為, 交邊(或邊) 于點(diǎn) 設(shè),的面積為,則之間的函數(shù)圖象大致為(

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,邊長(zhǎng)為1,∠A60,順次連接菱形ABCD各邊中點(diǎn),可得四邊形A1B1C1D1;順次連結(jié)四邊形A1B1C1D1各邊中點(diǎn),可得四邊形A2B2C2D2;順次連結(jié)四邊形A2B2C2D2各邊中點(diǎn),可得四邊形A3B3C3D3;按此規(guī)律繼續(xù)下去,,則四邊形A2019B2019C2019D2019的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1(注:與圖2完全相同),在直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)三點(diǎn),,

1)求拋物線的解析式和對(duì)稱軸;

2是拋物線對(duì)稱軸上的一點(diǎn),求滿足的值為最小的點(diǎn)坐標(biāo)(請(qǐng)?jiān)趫D1中探索);

3)在第四象限的拋物線上是否存在點(diǎn),使四邊形是以為對(duì)角線且面積為的平行四邊形?若存在,請(qǐng)求出點(diǎn)坐標(biāo),若不存在請(qǐng)說明理由.(請(qǐng)?jiān)趫D2中探索)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市隨機(jī)選取1000位顧客,記錄了他們購買甲、乙、丙、丁四種商品的情況,整理成如下統(tǒng)計(jì)表,其中“”表示購買,“×”表示未購買.假定每位顧客購買商品的可能性相同.

商品

顧客人數(shù)

100

×

217

×

×

200

×

300

×

×

85

×

×

×

98

×

×

×

1)估計(jì)顧客同時(shí)購買乙和丙的概率為__________

2)如果顧客購買了甲,并且同時(shí)也在乙、丙、丁中進(jìn)行了選購,則購買__________(填乙、丙、。┥唐返目赡苄宰畲螅

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線

1)當(dāng)時(shí),求拋物線的頂點(diǎn)坐標(biāo);

2)已知點(diǎn),拋物線軸交于點(diǎn)(不與重合),將點(diǎn)繞點(diǎn)逆時(shí)針旋轉(zhuǎn)90°至點(diǎn),

①直接寫出點(diǎn)的坐標(biāo)(用含的代數(shù)式表示);

②若拋物線與線段有且僅有一個(gè)公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ACB90°,ACBC,將ABC沿EF折疊,使點(diǎn)A落在直角邊BC上的D點(diǎn)處,設(shè)EFABAC邊分別交于點(diǎn)E、點(diǎn)F,如果折疊后CDFBDE均為等腰三角形,那么∠B_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC、BD相交于點(diǎn)O,且AOCO,ABCD

1)求證:ABCD;

2)若∠OAB=∠OBA,求證:四邊形ABCD是矩形.

查看答案和解析>>

同步練習(xí)冊(cè)答案