【題目】如圖所示,H是△ABC的高ADBE的交點,且DH=DC,則下列結論:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正確的有( 。

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】解:①∵BEAC,ADBC,∴∠AEH=∠ADB=90°.

∵∠HBD+∠BHD=90°,∠EAH+∠AHE=90°,∠BHD=∠AHE,∴∠HBD=∠EAH

DH=DC,∴△BDH≌△ADC(AAS),∴BD=AD,BH=AC;

②∵BC=AC,∴∠BAC=∠ABC

由①知,在Rt△ABD中,∵BD=AD,∴∠ABC=45°,∴∠BAC=45°,∴∠ACB=90°.

∵∠ACB+∠DAC=90°,∠ACB<90°,∴結論②為錯誤結論.

③由①證明知,△BDH≌△ADC,∴BH=AC

④∵CE=CD,∠ACB=∠ACB;∠ADC=∠BEC=90°,∴△BEC≌△ADC,由于缺乏條件,無法證得△BEC≌△ADC,∴結論④為錯誤結論

綜上所述,結論①,③為正確結論,結論②,④為錯誤結論,根據(jù)題意故選B.

故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,過點B60)的直線AB與直線OA相交于點A4,2),動點M在線段OA和射線AC上運動.

1)求直線AB的解析式.

2)求OAC的面積.

3)是否存在點M,使OMC的面積是OAC的面積的?若存在求出此時點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一堆有紅、白兩種顏色的球若干個,已知白球的個數(shù)比紅球少,但白球的2倍比紅球多.若把每一個白球都記作“2”,每一個紅球都記作“3”,則總數(shù)為“60”,那么這兩種球各有多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)不等式的基本性質,把下列不等式化成“xa”“xa”的形式:

14x3x+5 2)-2x<17

30.3x<-0.9 4xx4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為1,連接AC、BD,CE平分∠ACD交BD于點E,則DE=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在ABC中,BDAC于點D,EBC上一點,過E點作EFAC,垂足為F,過點DDHBCAB于點H.

(1)請你補全圖形。

(2)求證:BDH=CEF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC 中,A=60°ACB=40°,DBC邊延長線上一點,BM平分ABC,E為射線BM上一點.

1)如圖1,連接CE,

CEAB,求BEC的度數(shù);

CE平分ACD,求BEC的度數(shù).

2)若直線CE垂直于ABC的一邊,請直接寫出BEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知P(﹣12),則點P所在的象限為( 。

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ADABC的邊BC上的高,由下列條件中的某一個就能推出ABC是等腰三角形的是__

①∠BAD=ACD;②∠BAD=CAD;AB+BD=AC+CD;AB﹣BD=AC﹣CD.

查看答案和解析>>

同步練習冊答案