【題目】如圖,點(diǎn)A是雙曲線y=上一點(diǎn),過A作AB∥x軸,交直線y=﹣x于點(diǎn)B,點(diǎn)D是x軸上一點(diǎn),連接BD交雙曲線于點(diǎn)C,連接AD,若BC:CD=3:2,△ABD的面積為,tan∠ABD=,則k的值為( )
A. ﹣2 B. ﹣3 C. ﹣ D.
【答案】A
【解析】
如圖作BH⊥OD于H.延長BA交y軸于E.由tan∠ABD=tan∠BDH=,設(shè)DH=5m,BH=9m,則BH=BE=9m,OD=4m,推出C(-6m,m),推出A(-m,9m),由△ABD的面積為,推出m×9m=,可得m2=,推出k=-6m×m=-2;
如圖作BH⊥OD于H.延長BA交y軸于E.
∵AB∥DH,
∴∠ABD=∠BDH,
∴tan∠ABD=tan∠BDH=,設(shè)DH=5m,BH=9m,則BH=BE=9m,OD=4m,
∴C(-6m,m),
∴A(-m,9m),
∵△ABD的面積為,
∴m×9m=,
∴m2=,
∴k=-6m×m=-2,
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分別為△ABC三邊的長.
(1)如果x=-1是方程的根,試判斷△ABC的形狀,并說明理由;
(2)如果方程有兩個(gè)相等的實(shí)數(shù)根,試判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,平行四邊形的頂點(diǎn)的坐標(biāo)分別是, ,點(diǎn)把線段三等分,延長分別交于點(diǎn),連接, 則下列結(jié)論:; ③四邊形的面積為;④,其中正確的有( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=﹣1,給出下列結(jié)論:
①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正確的個(gè)數(shù)有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,經(jīng)過原點(diǎn)的拋物線可以用y=ax2+bx(a≠0)表示,對(duì)于這樣的拋物線:
(1)當(dāng)拋物線經(jīng)過點(diǎn)(﹣2,0)和(﹣1,3)時(shí),求拋物線的表達(dá)式;
(2)當(dāng)拋物線的頂點(diǎn)在直線y=﹣2x上時(shí),求b的值;
(3)如圖,現(xiàn)有一組這樣的拋物線,它們的頂點(diǎn)A1、A2、…,An在直線y=﹣2x上,橫坐標(biāo)依次為﹣1,﹣2,﹣3,…,﹣n(n為正整數(shù),且n≤12),分別過每個(gè)頂點(diǎn)作x軸的垂線,垂足記為B1、B2,…,Bn,以線段AnBn為邊向左作正方形AnBnCnDn,如果這組拋物線中的某一條經(jīng)過點(diǎn)Dn,求此時(shí)滿足條件的正方形AnBnCnDn的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在兩面墻之間有一個(gè)底端在A點(diǎn)的梯子,當(dāng)它靠在一側(cè)墻上時(shí),梯子的頂端在B點(diǎn);當(dāng)它靠在另一側(cè)墻上時(shí),梯子的頂端在D點(diǎn).已知∠BAC=60°,∠DAE=45°,點(diǎn)D到地面的垂直距離DE=3m.
(1)求兩面墻之間距離CE的大;
(2)求點(diǎn)B到地面的垂直距離BC的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=4cm,點(diǎn)E為AC邊上一點(diǎn),且AE=3cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以1cm/s的速度沿線段AB向終點(diǎn)B運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為x s.作∠EPF=90°,與邊BC相交于點(diǎn)F.設(shè)BF長為ycm.
(1)當(dāng)x= s時(shí),EP=PF;
(2)求在點(diǎn)P運(yùn)動(dòng)過程中,y與x之間的函數(shù)關(guān)系式;
(3)點(diǎn)F運(yùn)動(dòng)路程的長是 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)有一塊四邊形的空地ABCD,如圖所示,為了綠化環(huán)境,學(xué)校計(jì)劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.
(1)求出空地ABCD的面積.
(2)若每種植1平方米草皮需要200元,問總共需投入多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com