如圖,已知梯形ABCD中,AD∥BC,AB=CD=AD,AC,BD相交于O點(diǎn),∠BCD=60°,則下列說法不正確的是( )

A.梯形ABCD是軸對稱圖形
B.BC=2AD
C.S△AOD:S△BOC=1:2
D.AC平分∠DCB
【答案】分析:根據(jù)等腰梯形的性質(zhì)對各個(gè)結(jié)論進(jìn)行分析,從而判斷正確的個(gè)數(shù).
解答:解:A中符合等腰梯形的性質(zhì),故本選項(xiàng)正確;
B中過點(diǎn)D作DE⊥BC,過點(diǎn)A作AF⊥BC,則四邊形AFED是矩形,
∵∠BCD=60°,
∴∠EDC=30°,
∴CE=BF=CD,
∵AB=CD=AD,
∴BC=2AD,
故本選項(xiàng)正確;
C中又由B中得到BC=2AD,代入得到S△AOD:S△BOC=,故本選項(xiàng)錯(cuò)誤;
D中∵CD=AD,
∴∠DAC=∠DCA,
∵AD∥BC,
∴∠DAC=∠ACB,
∴∠DCA=∠ACB,
∴AC平分∠DCB,
故本選項(xiàng)正確.
故選C.
點(diǎn)評:此題主要考查等腰梯形的性質(zhì),涉及到了等腰梯形是軸對稱圖形,它的對稱軸是經(jīng)過上下底的中點(diǎn)的直線;相似三角形的面積比等于其對應(yīng)邊比的平方.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,已知梯形ABCD中,AD∥BC,BE平分∠ABC,BE⊥CD,∠A=110°,AD=3,AB=5,則BC的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)△A1B1C1的面積是S1,△A2B2C2的面積為S2(S1<S2),當(dāng)△A1B1C1∽△A2B2C2,且0.3≤
S1S2
≤0.4
時(shí),則稱△A1B1C1與△A2B2C2有一定的“全等度”.如圖,已知梯形ABCD,AD∥BC,∠B=30°,∠BCD=60°,連接AC.
(1)若AD=DC,求證:△DAC與△ABC有一定的“全等度”;
(2)你認(rèn)為:△DAC與△ABC有一定的“全等度”正確嗎?若正確,說明理由;若不正確,請舉出一個(gè)反例說明.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在△ABC中,∠B=90°,AB=28cm,BC=28cm,點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以3cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以1cm/s的速度移動(dòng),P,Q分別從A,B同時(shí)出發(fā),當(dāng)其中一精英家教網(wǎng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止.過Q作QD∥AB交AC于點(diǎn)D,連接PD,設(shè)運(yùn)動(dòng)時(shí)間為t秒時(shí),四邊形BQDP的面積為s.
(1)用t的代數(shù)式表示QD的長.
(2)求s關(guān)于t的函數(shù)解析式,并求出運(yùn)動(dòng)幾秒梯形BQDP的面積最大?最大面積是多少?
(3)連接QP,在運(yùn)動(dòng)過程中,能否使△DPQ為等腰三角形?若存在,求出t的值,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2007•遂寧)如圖,已知等腰△ABC的面積為4cm2,點(diǎn)D、E分別是AB、AC邊的中點(diǎn),則梯形DBCE的面積為
3
3
 cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解

(1)如圖①,△ABC中,D是BC中點(diǎn),連接AD,直接回答S△ABD與S△ADC相等嗎?
相等
相等
(S表示面積);
應(yīng)用拓展
(2)如圖②,已知梯形ABCD中,AD∥BC,E是AB的中點(diǎn),連接DE、EC,試?yán)蒙项}得到的結(jié)論說明S△DEC=S△ADE+S△EBC;
解決問題
(3)現(xiàn)有一塊如圖③所示的梯形試驗(yàn)田,想種兩種農(nóng)作物做對比實(shí)驗(yàn),用一條過D點(diǎn)的直線,將這塊試驗(yàn)田分割成面積相等的兩塊,畫出這條直線,并簡單說明另一點(diǎn)的位置.

查看答案和解析>>

同步練習(xí)冊答案