設(shè)△A1B1C1的面積是S1,△A2B2C2的面積為S2(S1<S2),當(dāng)△A1B1C1∽△A2B2C2,且0.3≤
S1S2
≤0.4
時(shí),則稱△A1B1C1與△A2B2C2有一定的“全等度”.如圖,已知梯形ABCD,AD∥BC,∠B=30°,∠BCD=60°,連接AC.
(1)若AD=DC,求證:△DAC與△ABC有一定的“全等度”;
(2)你認(rèn)為:△DAC與△ABC有一定的“全等度”正確嗎?若正確,說明理由;若不正確,請(qǐng)舉出一個(gè)反例說明.精英家教網(wǎng)
分析:(1)先過點(diǎn)D作DE⊥AC,交AC于E,利用AD∥BC,AD=DC,∠BCD=60°,可證∠DAC=∠ACD=∠ACB=30°,那么△ABC和△DAC中就有兩組對(duì)應(yīng)角相等,即可求它們相似.可以設(shè)DE=x,由于∠DAC=30°,所以AD=2x,AE=
3
x,那么利用等腰三角形三線合一定理,可知AC=2
3
x=AB,于是S△DAC:S△ABC=DA:AB=(
2x
2
3
x
2=1:3,而0.3≤
1
3
≤0.4,所以兩三角形有一定的全等度;
(2)不正確,舉出反例進(jìn)行論證其錯(cuò)誤即可.比如可令∠ACB=40°,則∠ACD=20°,∠DAC=40°,∠BAC=110°,∠ADC=120°,顯然兩個(gè)三角形不相似,當(dāng)然就不存在全等度了.
解答:精英家教網(wǎng)(1)證明:∵AD=DC
∴∠DAC=∠DCA
∵AD∥BC
∴∠DAC=∠ACB
∵∠BCD=60°
∴∠ACD=∠ACB=30°
∵∠B=30°
∴∠DAC=∠B=30°
∴△DAC∽△ABC
過點(diǎn)D作DE⊥AC于點(diǎn)E,
∵AD=DC
∴AC=2EC
在Rt△DEC中
∵∠DCA=30°,cos∠DCA=
EC
DC
=
3
2

∴DC=
2
3
EC
DC
AC
=
1
3

S△DAC
S△ABC
=(
DC
AC
2=
1
3
≈0.33,
∵0.3
S△DEC
S△ADC
0.4
∴△DAC與△ABC有一定的“全等度”.

(2)解:△DAC與△ABC有一定的△“全等度”不正確.
反例:若
∠ACB=40°,則△DAC與△ABC不具有一定的“全等度”.
∵∠B=30°,∠BCD=60°,
∴∠BAC=110°
∵AD∥BC
∴∠D=120°
∴△DAC與△ABC不相似
∴若∠ACB=40°,則△DAC與△ABC不具有一定的“全等度”.
點(diǎn)評(píng):本題利用了等邊對(duì)等角的性質(zhì)、平行線的性質(zhì)、三角函數(shù)值、相似三角形的判定、相似三角形的面積比等于相似比的平方等知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:第27章《相似》中考題集(28):27.2 相似三角形(解析版) 題型:解答題

設(shè)△A1B1C1的面積是S1,△A2B2C2的面積為S2(S1<S2),當(dāng)△A1B1C1∽△A2B2C2,且時(shí),則稱△A1B1C1與△A2B2C2有一定的“全等度”.如圖,已知梯形ABCD,AD∥BC,∠B=30°,∠BCD=60°,連接AC.
(1)若AD=DC,求證:△DAC與△ABC有一定的“全等度”;
(2)你認(rèn)為:△DAC與△ABC有一定的“全等度”正確嗎?若正確,說明理由;若不正確,請(qǐng)舉出一個(gè)反例說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年安徽省亳州市蒙城六中九年級(jí)(上)第三次月考數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)△A1B1C1的面積是S1,△A2B2C2的面積為S2(S1<S2),當(dāng)△A1B1C1∽△A2B2C2,且時(shí),則稱△A1B1C1與△A2B2C2有一定的“全等度”.如圖,已知梯形ABCD,AD∥BC,∠B=30°,∠BCD=60°,連接AC.
(1)若AD=DC,求證:△DAC與△ABC有一定的“全等度”;
(2)你認(rèn)為:△DAC與△ABC有一定的“全等度”正確嗎?若正確,說明理由;若不正確,請(qǐng)舉出一個(gè)反例說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圖形的相似》(06)(解析版) 題型:解答題

(2010•廈門)設(shè)△A1B1C1的面積是S1,△A2B2C2的面積為S2(S1<S2),當(dāng)△A1B1C1∽△A2B2C2,且時(shí),則稱△A1B1C1與△A2B2C2有一定的“全等度”.如圖,已知梯形ABCD,AD∥BC,∠B=30°,∠BCD=60°,連接AC.
(1)若AD=DC,求證:△DAC與△ABC有一定的“全等度”;
(2)你認(rèn)為:△DAC與△ABC有一定的“全等度”正確嗎?若正確,說明理由;若不正確,請(qǐng)舉出一個(gè)反例說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省廈門市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•廈門)設(shè)△A1B1C1的面積是S1,△A2B2C2的面積為S2(S1<S2),當(dāng)△A1B1C1∽△A2B2C2,且時(shí),則稱△A1B1C1與△A2B2C2有一定的“全等度”.如圖,已知梯形ABCD,AD∥BC,∠B=30°,∠BCD=60°,連接AC.
(1)若AD=DC,求證:△DAC與△ABC有一定的“全等度”;
(2)你認(rèn)為:△DAC與△ABC有一定的“全等度”正確嗎?若正確,說明理由;若不正確,請(qǐng)舉出一個(gè)反例說明.

查看答案和解析>>

同步練習(xí)冊(cè)答案