【題目】汽車專賣店銷售某種型號(hào)的汽車.已知該型號(hào)汽車的進(jìn)價(jià)為10萬元/輛,銷售一段時(shí)間后發(fā)現(xiàn):當(dāng)該型號(hào)汽車售價(jià)定為15萬元/輛時(shí),平均每周售出8輛;售價(jià)每降低0.5萬元,平均每周多售出2輛.

1)若要平均每周售出汽車不低于15輛,該汽車的售價(jià)最多定為多少萬元?

2)該店計(jì)劃下調(diào)售價(jià),盡可能增加銷量,減少庫(kù)存,但要確保平均每周的銷售利潤(rùn)為40萬元,每輛汽車的售價(jià)定為多少合適?

【答案】1)若要平均每周售出汽車不低于15輛,該汽車的售價(jià)最多定為13.25萬元;(2)每輛汽車的售價(jià)定為12萬元更合適.

【解析】

1)設(shè)汽車的售價(jià)為x萬元,由題意可得每周多售出輛車,再根據(jù)每周售出汽車不低于15輛列出方程求得即可;

2)設(shè)每輛汽車售價(jià)y萬元,根據(jù)每輛的盈利×銷售的輛數(shù)=40萬元,列方程求出y的值并結(jié)合盡可能增加銷量的要求選出合適的售價(jià)即可。

1)設(shè)汽車的售價(jià)為x萬元,由題意得:

解得

答:若要平均每周售出汽車不低于15輛,該汽車的售價(jià)最多定為13.25萬元.

2)每輛汽車的售價(jià)為y萬元,由題意得:

化簡(jiǎn),得y227y+1800解得:y112,y215,

由于希望增大銷量,定價(jià)12萬元售價(jià)更合適

答:每輛汽車的售價(jià)定為12萬元更合適.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016新疆)如圖,ABCD中,AB=2,AD=1,ADC=60°,將ABCD沿過點(diǎn)A的直線l折疊,使點(diǎn)D落到AB邊上的點(diǎn)D處,折痕交CD邊于點(diǎn)E

(1)求證:四邊形BCED是菱形;

(2)若點(diǎn)P時(shí)直線l上的一個(gè)動(dòng)點(diǎn),請(qǐng)計(jì)算PD′+PB的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠C90°,AC16cm,BC12cm.現(xiàn)有動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線AC向點(diǎn)C方向運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CB向點(diǎn)B方向運(yùn)動(dòng).如果點(diǎn)P的速度是4cm/s,點(diǎn)Q的速度是3cm/s,它們同時(shí)出發(fā),當(dāng)有一點(diǎn)到達(dá)所在線段的端點(diǎn)時(shí),就停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為ts

求:(1)用含t的代數(shù)式表示RtCPQ的面積S;

2)當(dāng)t2s時(shí),P、Q兩點(diǎn)之間的距離是多少?

3)當(dāng)t為多少秒時(shí),以C、P、Q為頂點(diǎn)的三角形與ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸交于兩點(diǎn),直線與y 軸交于點(diǎn),與軸交于點(diǎn),點(diǎn)軸上方的拋物線上一動(dòng)點(diǎn),過點(diǎn)軸于點(diǎn),交直線于點(diǎn).設(shè)點(diǎn)的橫坐標(biāo)為

(1)求拋物線的解析式;

(2)若,求的值;

(3)若點(diǎn)是點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)、是否存在點(diǎn),使點(diǎn)落在y軸上?若存在,求出相應(yīng)的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為矩形上一點(diǎn),連接,將沿翻折得到,過點(diǎn)FGBC于點(diǎn)G,若AB=4FG=1,則AE的長(zhǎng)度為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,雙曲線y= (x>0)經(jīng)過A、B兩點(diǎn),若點(diǎn)A的橫坐標(biāo)為1,OAB=90°,且OA=AB,則k的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6,BC=8,點(diǎn)E是AD邊上的動(dòng)點(diǎn),將矩形ABCD沿BE折疊,點(diǎn)A落在點(diǎn)A′處,連接A′C、BD.

1)如圖1,若點(diǎn)A′恰好落在BD上,求tan∠ABE的值;

2)如圖2,已知AE=2,求△A′CB的面積;

3)點(diǎn)E在AD邊上運(yùn)動(dòng)的過程中,∠A′CB的度數(shù)是否存在最大值,若存在,求出此時(shí)線段AE的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解本校九年級(jí)學(xué)生期末數(shù)學(xué)考試情況,小亮在九年級(jí)隨機(jī)抽取了一部分學(xué)生的期末數(shù)學(xué)成績(jī)?yōu)闃颖,分為A(100﹣90分)、B(89~80分)、C(79~60分)、D(59~0分)四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答以下問題:

(1)這次隨機(jī)抽取的學(xué)生共有多少人?

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)這個(gè)學(xué)校九年級(jí)共有學(xué)生1200人,若分?jǐn)?shù)為80分(含80分)以上為優(yōu)秀,請(qǐng)估計(jì)這次九年級(jí)學(xué)生期末數(shù)學(xué)考試成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù)大約有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過點(diǎn)C作直線lAB,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),直線PA與⊙O交于另一點(diǎn)D,連結(jié)CD,設(shè)直線PB與直線AC交于點(diǎn)E.

(1)求∠BAC的度數(shù);

(2)當(dāng)點(diǎn)DAB上方,且CDBP時(shí),求證:PC=AC;

(3)在點(diǎn)P的運(yùn)動(dòng)過程中

①當(dāng)點(diǎn)A在線段PB的中垂線上或點(diǎn)B在線段PA的中垂線上時(shí),求出所有滿足條件的∠ACD的度數(shù);

②設(shè)⊙O的半徑為6,點(diǎn)E到直線l的距離為3,連結(jié)BD,DE,直接寫出BDE的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案