【題目】知等腰三角形的一個(gè)底角為40°,則這個(gè)等腰三角形的頂角為( )
A.40°
B.100°
C.40°或100°
D.50°或70°

【答案】A
【解析】∵等腰三角形的一個(gè)底角為40°∴頂角為180°-(40°+40°)=100°,故B項(xiàng)正確.
結(jié)合所給條件根據(jù)等腰三角形性質(zhì)可得兩底角和為80°,再根據(jù)三角形內(nèi)角和定理可得頂角的度數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖1,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足為E,點(diǎn)F是點(diǎn)E關(guān)于AB的對(duì)稱點(diǎn),連接AF,BF.

(1)AE的長(zhǎng)為 ,BE的長(zhǎng)為 ;

(2)如圖2,將△ABF繞點(diǎn)B順時(shí)針旋轉(zhuǎn)一個(gè)角α(0°<α<180°),記旋轉(zhuǎn)中的△ABF為△A′BF′.

①在旋轉(zhuǎn)過(guò)程中,當(dāng)A′F′與AE垂直于點(diǎn)H,如圖3,設(shè)BA′所在直線交AD于點(diǎn)M,請(qǐng)求出DM的長(zhǎng);

②在旋轉(zhuǎn)過(guò)程中,設(shè)A′F′所在的直線與直線AD交于點(diǎn)P,與直線BD交于點(diǎn)Q,是否存在這樣的P、Q兩點(diǎn),使△DPQ為以PQ為底的等腰三角形?請(qǐng)直接寫出DQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用配方法解下列方程,配方正確的是( 。

A. 2y2﹣4y﹣4=0可化為(y﹣12=4 B. x2﹣2x﹣9=0可化為(x﹣12=8

C. x2+8x﹣9=0可化為(x+42=16 D. x2﹣4x=0可化為(x﹣22=4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙O的半徑為5cm,直線1上有一點(diǎn)P,OP=5cm,則直線1⊙O的位置關(guān)系為(  )

A. 相交 B. 相離 C. 相切 D. 相交或相切

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有理數(shù)混合運(yùn)算的順序是先算_______,再算_______,最后算_______,如有括號(hào),就先算_______;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等腰三角形的兩條邊長(zhǎng)分別是2和4,則它的周長(zhǎng)是( )
A.8
B.10
C.8或10
D.無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在△ABC中,AB=7,tanA=,∠B=45°.點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng)(不與點(diǎn)A、B重合),過(guò)點(diǎn)P作PQ⊥AB.交折線AC-CB于點(diǎn)Q,以PQ為邊向右作正方形PQMN,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒),正方形PQMN與△ABC重疊部分圖形的面積為S(平方單位).

(1)直接寫出正方形PQMN的邊PQ的長(zhǎng)(用含t的代數(shù)式表示).

(2)當(dāng)點(diǎn)M落在邊BC上時(shí),求t的值.

(3)求S與t之間的函數(shù)關(guān)系式.

(4)如圖②,點(diǎn)P運(yùn)動(dòng)的同時(shí),點(diǎn)H從點(diǎn)B出發(fā),沿B-A-B的方向做一次往返運(yùn)動(dòng),在B-A上的速度為每秒2個(gè)單位長(zhǎng)度,在A-B上的速度為每秒4個(gè)單位長(zhǎng)度,當(dāng)點(diǎn)H停止運(yùn)動(dòng)時(shí),點(diǎn)P也隨之停止,連結(jié)MH.設(shè)MH將正方形PQMN分成的兩部分圖形面積分別為S1、S2(平方單位)(0<S1<S2),直接寫出當(dāng)S2≥3S1時(shí)t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+2與x軸交于點(diǎn)A(1,0),與y軸交于點(diǎn)B,其對(duì)稱軸是x=-1,點(diǎn)C是y軸上一點(diǎn),其縱坐標(biāo)為m,連結(jié)AC,將線段AC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到線段AD,以AC、AD為邊作正方形ACED.

(1)用含m的代數(shù)式表示點(diǎn)D的橫坐標(biāo)為

(2)求該拋物線所對(duì)應(yīng)的函數(shù)表達(dá)式.

(3)當(dāng)點(diǎn)E落在拋物線y=ax2+bx+2上時(shí),求此時(shí)m的值.

(4)令拋物線與x軸另一交點(diǎn)為點(diǎn)F,連結(jié)BF,直接寫出正方形ACED的一邊與BF平行時(shí)的m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】因式分解:3x312xy2_____

查看答案和解析>>

同步練習(xí)冊(cè)答案