【題目】如圖,在ABC 中,ABAC,∠BAC120°,AC 的垂直平分線交 BC F,交 AC E,交 BA 的延長線于 G,若 EG3,則 BF 的長是______

【答案】4

【解析】

根據(jù)線段垂直平分線得出AE=EC,∠AEG=AEF=90°,求出∠B=C=G=30°,根據(jù)勾股定理和含30°角的直角三角形性質(zhì)求出AEEF,即可求出FG,再求出BF=FG即可

AC的垂直平分線FG,
AE=EC,∠AEG=AEF=90°,
∵∠BAC=120°
∴∠G=BAC-AEG=120°-90°=30°,
∵∠BAC=120°,AB=AC
∴∠B=C=180°-BAC=30°,
∴∠B=G
BF=FG,
∵在RtAEG中,∠G=30°,EG=3,
AG=2AE
即(2AE2=AE2+32,
AE=(負(fù)值舍去)
CE=
同理在RtCEF中,∠C=30°,CF=2EF
2EF2=EF2+2,
EF=1(負(fù)值舍去),
BF=GF=EF+CE=1+3=4,
故答案為:4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y1=ax2x+cx軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,),拋物線y1的頂點(diǎn)為G,GMx軸于點(diǎn)M.將拋物線y1平移后得到頂點(diǎn)為B且對(duì)稱軸為直線l的拋物線y2

(1)求拋物線y2的解析式;

(2)如圖2,在直線l上是否存在點(diǎn)T,使TAC是等腰三角形?若存在,請(qǐng)求出所有點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說明理由;

(3)點(diǎn)P為拋物線y1上一動(dòng)點(diǎn),過點(diǎn)Py軸的平行線交拋物線y2于點(diǎn)Q,點(diǎn)Q關(guān)于直線l的對(duì)稱點(diǎn)為R,若以P,Q,R為頂點(diǎn)的三角形與AMG全等,求直線PR的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,動(dòng)點(diǎn)P在線段AC上以5cm/s的速度從點(diǎn)A運(yùn)動(dòng)到點(diǎn)C,過點(diǎn)P作PD⊥AB于點(diǎn)D,將△APD繞PD的中點(diǎn)旋轉(zhuǎn)180°得到△A′DP,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為x(s).

(1)當(dāng)點(diǎn)A′落在邊BC上時(shí),求x的值;

(2)在動(dòng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)C過程中,當(dāng)x為何值時(shí),△A′BC是以A′B為腰的等腰三角形;

(3)如圖(2),另有一動(dòng)點(diǎn)Q與點(diǎn)P同時(shí)出發(fā),在線段BC上以5cm/s的速度從點(diǎn)B運(yùn)動(dòng)到點(diǎn)C,過點(diǎn)Q作QE⊥AB于點(diǎn)E,將△BQE繞QE的中點(diǎn)旋轉(zhuǎn)180°得到△B′EQ,連結(jié)A′B′,當(dāng)直線A′B′與△ABC的一邊垂直時(shí),求線段A′B′的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果批發(fā)商場銷售一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下.若每千克漲價(jià)1元,日銷售量將減少20千克.

(1)現(xiàn)該商場要保證每天盈利6000元,同時(shí)又要使顧客得到實(shí)惠,那么每千克應(yīng)漲價(jià)多少元?

(2)每千克水果漲價(jià)多少元時(shí),商場每天獲得的利潤最大?獲得的最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙兩圖是分別由五個(gè)棱長為“1”的立方塊組成的兩個(gè)幾何體,它們的三視圖中完全一致的是

A. 三視圖都一致 B. 主視圖 C. 俯視圖 D. 左視圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=3x﹣3分別交x軸、y軸于A、B兩點(diǎn),拋物線y=x2+bx+c經(jīng)過A、B兩點(diǎn),點(diǎn)C是拋物線與x軸的另一個(gè)交點(diǎn)(與A點(diǎn)不重合).

1)求拋物線的解析式;

2)求ABC的面積;

3)在拋物線的對(duì)稱軸上,是否存在點(diǎn)M,使ABM為等腰三角形?若不存在,請(qǐng)說明理由;若存在,求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABMRtADN的斜邊分別為正方形的邊ABAD,其中AM=AN.

(1)求證:RtABMRtAND

(2)線段MN與線段AD相交于T,若AT=,的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高校學(xué)生會(huì)發(fā)現(xiàn)同學(xué)們就餐時(shí)剩余飯菜較多,浪費(fèi)嚴(yán)重,于是準(zhǔn)備在校內(nèi)倡導(dǎo)光盤行動(dòng),讓同學(xué)們珍惜糧食,為了讓同學(xué)們理解這次活動(dòng)的重要性,校學(xué)生會(huì)在某天午餐后,隨機(jī)調(diào)查了部分同學(xué)這餐飯菜的剩余情況,并將結(jié)果統(tǒng)計(jì)后繪制成了如圖所示的不完整的統(tǒng)計(jì)圖。

(1)這次被調(diào)查的同學(xué)共有 名;

(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)校學(xué)生會(huì)通過數(shù)據(jù)分析,估計(jì)這次被調(diào)查的所有學(xué)生一餐浪費(fèi)的食物可以供200人用一餐。據(jù)此估算,該校18000名學(xué)生一餐浪費(fèi)的食物可供多少人食用一餐?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系,過點(diǎn)直線交正半軸于點(diǎn),將直線著點(diǎn)時(shí)針旋轉(zhuǎn)后,分別與交于點(diǎn)、.

(1)若,求直線函數(shù)關(guān)系式;

(2)連接,面積是5,求點(diǎn)運(yùn)動(dòng)路徑長.

查看答案和解析>>

同步練習(xí)冊(cè)答案