【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=-1的頂點(diǎn)為A,直線l過點(diǎn)P0m)且平行于x軸,與拋物線交于點(diǎn)B和點(diǎn)C.若AB=AC,BAC=90°,則m=______

【答案】3

【解析】

設(shè)直線l與對(duì)稱軸的交點(diǎn)為點(diǎn)D,則根據(jù)等腰直角三角形的性質(zhì)可得BD=AD,根據(jù)韋達(dá)定理可表示出x1+x2x1x2,進(jìn)而表示出BC的長度和BD的長度,根據(jù)BD=AD可列出方程求出m的值.

設(shè)直線l與對(duì)稱軸的交點(diǎn)為點(diǎn)D,則根據(jù)等腰直角三角形的性質(zhì)可得BD=AD,拋物線的頂點(diǎn)坐標(biāo)為A3,-1),

由題意得直線l的表達(dá)式為直線y=m

當(dāng)y=m時(shí),可得方程

原方程整理可得,

由一元二次方程根與系數(shù)的關(guān)系可得x1+x2=6,x1x2=,

x1-x22=x1+x22-4 x1x2=36-20+16m=16+16m

∵直線l與拋物線交于點(diǎn)B和點(diǎn)C

m-1,

BC2=16+16m,AD=m+1,BD==AD,

BC=2ADBC2=4AD2,

16+16m =4m+12

整理得,m2-2m-3=0

解得m=3m=-1(舍去)

m=3.

故答案為3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,∠B=60°,DBC上一點(diǎn),過點(diǎn)DDEABE

1)連接AD,取AD中點(diǎn)F,連接CF,CE,FE,判斷CEF的形狀并說明理由

2)若BD=CD,將BED繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)0n180),當(dāng)點(diǎn)B落在RtABC的邊上時(shí),求出n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙OABC的外接圓,AC是直徑,弦BDBAEBDC,交DC的延長線于點(diǎn)E

1)求證:BE是⊙O的切線;

2)當(dāng)sinBCE,AB3時(shí),求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與軸,軸交于兩點(diǎn),與反比例函數(shù)的圖象相交于、兩點(diǎn),分別過、兩點(diǎn)作軸和軸的垂線,垂足分別為,連接、.下列四個(gè)結(jié)論:①的面積相等;②;③;④.其中正確的結(jié)論是__________.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,BE平分∠ABCAC于點(diǎn)E,作EDEBAB于點(diǎn)D,OBED的外接圓.

(1)求證:AC是⊙O的切線;

(2)已知⊙O的半徑為2.5,BE=4,求BC,AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張老師計(jì)劃通過步行鍛煉身體,她用運(yùn)動(dòng)手環(huán)連續(xù)記錄了6天的運(yùn)動(dòng)情況,并用統(tǒng)計(jì)表和統(tǒng)計(jì)圖記錄數(shù)據(jù):

日期

41

42

43

44

45

46

步行數(shù)()

10672

4927

5543

6648

步行距離(公里)

6.8

3.1

3.5

4.6

卡路里消耗(千卡)

157

73

82

107

燃燒脂肪()

20

10

12

16

(1).請(qǐng)你將手環(huán)記錄的45日和46日的數(shù)據(jù)(如圖①)填入表格.

(2).請(qǐng)你將條形統(tǒng)計(jì)圖(如圖②)補(bǔ)充完整.

(3).張老師這6天平均每天約步行____公里,張老師分析發(fā)現(xiàn)每天步行距離和消耗的卡路里近似成正比例關(guān)系,她打算每天消耗的卡路里至少達(dá)到100千卡,那么每天步行距離大約至少為_____公里(精確到0.1公里).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】田忌賽馬的故事為我們所熟知.小亮與小齊學(xué)習(xí)概率初步知識(shí)后設(shè)計(jì)了如下游戲:小亮手中有方塊l0、8、6三張撲克牌,小齊手中有方塊9、7、5三張撲克牌.每人從各自手中取一張牌進(jìn)行比較,數(shù)字大的為本“局”獲勝,每次取的牌不能放回.

(1)若每人隨機(jī)取手中的一張牌進(jìn)行比賽,求小齊本“局”獲勝的概率;

(2)若比賽采用三局兩勝制,即勝2局或3局者為本次比賽獲勝者.當(dāng)小亮的三張牌出牌順序?yàn)橄瘸?,再出8,最后出l0時(shí),小齊隨機(jī)出牌應(yīng)對(duì),求小齊本次比賽獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(發(fā)現(xiàn))如圖,點(diǎn)E,F分別在正方形ABCD的邊BC,CD上,連接EF.因?yàn)?/span>AB=AD,所以把ΔABEA逆時(shí)針旋轉(zhuǎn)90°至ΔADG,可使ABAD重合.因?yàn)椤?/span>CDA=B=90°,所以∠FDG=180°,所以F、DG共線.

如果__________(填一個(gè)條件),可得ΔAEF≌ΔAGF.經(jīng)過進(jìn)一步研究我們可以發(fā)現(xiàn):當(dāng)BE,EFFD滿足__________時(shí),∠EAF=45°.

(應(yīng)用)

如圖,在矩形ABCD中,AB=6,AD=m,點(diǎn)E在邊BC上,且BE=2

1)若m=8,點(diǎn)F在邊DC上,且∠EAF=45°(如圖),求DF的長;

2)若點(diǎn)F在邊DC上,且∠EAF=45°,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形紙片ABCD,點(diǎn)EAB的中點(diǎn),點(diǎn)GBC上的一點(diǎn),∠BEG60°.現(xiàn)沿直線EG將紙片折疊,使點(diǎn)B落在紙片上的點(diǎn)H處,連接AH,則與∠BEG相等的角的個(gè)數(shù)為( 。

A. 5B. 3C. 2D. 1

查看答案和解析>>

同步練習(xí)冊(cè)答案