分析 (1)要證明無論k為何值時,方程總有兩個不相等的實數(shù)根,就是證明△>0,而△=(2k+3)2-4(k2+3k+2)=1,所以△>0;
(2)根據(jù)等腰三角形的性質(zhì),分三種情況討論:①AB=AC,②AB=BC,③BC=AC;后兩種情況相同,則可分兩種情況,再由根與系數(shù)的關系得出k的值.
解答 (1)證明:∵△=(2k+3)2-4(k2+3k+2)=1,
∴△>0,
∴無論k取何值時,方程總有兩個不相等的實數(shù)根;
(2﹚解:∵△ABC是等腰三角形;
∴當AB=AC時,△=b2-4ac=0,
∴(2k+3)2-4(k2+3k+2)=0,
解得k不存在;
當AB=BC時,即AB=5,
∴5+AC=2k+3,5AC=k2+3k+2,
解得k=3或4,
∴AC=4或6.
∴△ABC的周長為14或16.
點評 本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的判別式△=b2-4ac.當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.同時考查了一元二次方程的解法.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | y=kx | B. | y=2x-1 | C. | y=$\sqrt{2}$x | D. | y=2x2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | (m+n)(m3+m2n+n3) | B. | (m-n)(m2+n2) | C. | (x+1)(x2-x+1) | D. | (x2+1)(x2-x+1) |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 40° | B. | 50° | C. | 60° | D. | 70° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com